Skip to main content

Degraded Waste Package Criticality: Summary Report of Evaluations Through 1996

The purpose of this document is to summarize the degraded waste package disposal criticality evaluations which were performed in fiscal years I995 and I996. These evaluations were described in detail in 4 previous documents (Refs. I through 4). The initial version of this summary has been described in the I996 Disposal Criticality Analysis Methodology Technical Report (Ref. 5). A topical report planned for 1998 will present the methodology in its final form for approval by the US Nuclear Regulatory Commission.

Community

EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages

The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.

Community

EQ6 Calculation for Chemical Degradation of Enrico Fermi Codisposal Waste Packages: Effects of Updated Design and Rates

The Monitored Geologic Repository (MGR) Waste Package Project of the BSC Management and Operating Contractor for the Department of Energy's Office of Civilian Radioactive Waste Management performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Reactor owned by the DOE (Ref. 9). The Fermi SNF has been considered for disposal at the proposed Yucca Mountain site.

Community

Waste Package Probabilistic Criticality Analysis: Summary Report of Evaluations in 1997

The emplacement of nuclear waste in the proposed geologic repository must satisfy relevant regulatory requirements with respect to criticality, 10CFR60. I31 (h) (Ref. 25). The waste packages for the various waste forms will be designed to preclude criticality (typically by the inclusion of neutron absorbers) even if the waste package becomes filled with water. Criticality may, however, be possible if the contents of the waste package become degraded in such a way that the fissile material can be separated from the neutron absorbers, while sufficient moderator is retained.

Community

EBS Radionuclide Transport Abstraction

The purpose of this report is to develop and analyze the Engineered Barrier System (EBS) Radionuclide Transport Abstraction Model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report (BSC 2006 [DIRS 177739]). The EBS Radionuclide Transport Abstraction (or RTA) is the conceptual model used in the Total System Performance Assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ).

Community

Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality

This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.

Community

3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.

Community