Skip to main content
Author
D. Isherwood
Publication Date
Attach Document
Attachment Size
NWD_in_Geologic_Repositories.pdf (465.84 KB) 465.84 KB
Abstract/Summary

Deep geologic repositories are being widely studied as the most favored method of disposal of nuclear waste. Scientists search for repository sites in salt, basalt, tuff and granite that are geologically and hydrologically suitable. The systematic evaluation of the safety and reliability of deep geologic disposal centers around the concept of interacting multiple barriers. The simplest element to describe of the geologic barrier is the physical isolation of the waste in a remote region at some depth within the rock unit. Of greater complexity is the hydrologic barrier which is determined by the waste dilution factors and groundwater flow rates. The least understood is the geochemical barrier, identified as a series-of waste/water/rock interactions involving sorption, membrane filtration, precipitation and complexing. In addition to the natural barriers are the engineered barriers, which include the waste form and waste package. The relative effectiveness of these barriers to provide long-term isolation of nuclear waste from the human environment is being assessed through the use of analytical and numerical models. The data used in the models is generally adequate for parameter sensitivity studies which bound the uncertainties in the release and transport predictions; however, much of the data comes from laboratory testing, and the problem of correlating laboratory and field measurements has not been resolved. Although safety assessments based on generic sites have been useful in the past for developing site selection criteria, site-specific studies are needed to judge the suitability of a particular host rock and its environment.

Document Type
SED Publication Type
Country
United States