Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
Research Supporting Implementation of Burnup Credit in the Criticality Safety Assessment of Transport and Storage Casks
Research Supporting Implementation of Burnup Credit in the Criticality Safety Assessment of Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
A Statistical Method for Estimating the Net Uncertainty in the Prediction of k Based on Isotopic Uncertainties
A Statistical Method for Estimating the Net Uncertainty in the Prediction of k Based on Isotopic Uncertainties
Issues for Effective Implementation of Burnup Credit
Issues for Effective Implementation of Burnup Credit
In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at
pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of
burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the
technical issues related to the basic physics phenomena and parameters of importance are similar in each of these
applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the
Regulatory Status of Burnup Credit for Spent-Fuel Storage and Transport Casks
Regulatory Status of Burnup Credit for Spent-Fuel Storage and Transport Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
This report describes a novel approach developed at the Oak Ridge National Laboratory
(ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor
for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality
safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor.
Validation methods for burnup credit have attempted to separate the uncertainty associated with
Radiation Effects of Isotopic Uncertainty for Burnup Credit Validation
Radiation Effects of Isotopic Uncertainty for Burnup Credit Validation
The objective of this calculation is to provide the uncertainty term for fission product and minor actinides which contributes to the determination of the critical limit for burnup credit calculations. The scope of this calculation covers PWR and BWR spent nuclear fuel. This activity supports the Criticality Department's validation of burnup credit. The intended use of these results is in future Criticality Department calculations and analyses.