Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
Reconciliation of Isotopic Uncertainty Between Assays and Integral Benchmarks
A Statistical Method for Estimating the Net Uncertainty in the Prediction of k Based on Isotopic Uncertainties
A Statistical Method for Estimating the Net Uncertainty in the Prediction of k Based on Isotopic Uncertainties
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
A Stochastic Method for Estimating the Effect of Isotopic Uncertainties in Spent Nuclear Fuel
This report describes a novel approach developed at the Oak Ridge National Laboratory
(ORNL) for the estimation of the uncertainty in the prediction of the neutron multiplication factor
for spent nuclear fuel. This technique focuses on burnup credit, where credit is taken in criticality
safety analysis for the reduced reactivity of fuel irradiated in and discharged from a reactor.
Validation methods for burnup credit have attempted to separate the uncertainty associated with
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
The work reported here is an investigation of the sensitivity of component temperatures in a specific storage system, including fuel cladding temperatures, in response to modeling assumptions that differ from design-basis, including age-related changes that could degrade the thermal behavior of the system. Preliminary evaluations of representative horizontal and vertical storage systems at design basis conditions provides general insight into the expected behavior of storage systems over extended periods of time.
Radiation Effects of Isotopic Uncertainty for Burnup Credit Validation
Radiation Effects of Isotopic Uncertainty for Burnup Credit Validation
The objective of this calculation is to provide the uncertainty term for fission product and minor actinides which contributes to the determination of the critical limit for burnup credit calculations. The scope of this calculation covers PWR and BWR spent nuclear fuel. This activity supports the Criticality Department's validation of burnup credit. The intended use of these results is in future Criticality Department calculations and analyses.