Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Recommendations Related to Browns Ferry Fire (NUREG-0050)
Recommendations Related to Browns Ferry Fire (NUREG-0050)
On March 22, 1975, a fire was experienced at the Browns Ferry Nuclear Plant near Decatur, Alabama. The Special Review Group was established by the Executive Director for Operations of the Nuclear Regulatory Commission (NRC) soon after the fire to identify the lessons learned from this event and to make recommendations for the future in the light of these lessons. Unless further developments indicate a need to reconvene the Review Group, its task is considered complete with the publication of this report.
Safety Evaluation for Operation of Browns Ferry, Units 1 and 2, Following the March 22, 1975 Fire (NUREG-0061, Initial Report)
Safety Evaluation for Operation of Browns Ferry, Units 1 and 2, Following the March 22, 1975 Fire (NUREG-0061, Initial Report)
On March 22, 1975, a fire at the Browns Ferry Nuclear Plant caused a shutdown of Units 1 and 2. The facility subsequent to the shutdown was found to have incurred substantial damage to power, control, and instrumentation wiring. All three units are presently in the shutdown condition with the fuel removed from the vessels for Units 1 and 2; the Unit 3 reactor is still under construction with operation for that unit scheduled for early 1976.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
BWR Axial Profile
BWR Axial Profile
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
Assessment of Accident Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5
Assessment of Accident Risk for Transport of Spent Nuclear Fuel to Yucca Mountain Using RADTRAN 5.5
This report evaluates the radiological impacts during postulated accidents associated with the
transportation of spent nuclear fuel to the proposed Yucca Mountain repository, using the
RADTRAN 5.5 computer code developed by Sandia National Laboratories. RADTRAN 5.5 can
be applied to estimate the risks associated both with incident-free transportation of radioactive
materials as well as with accidents that may be assumed to occur during transportation. Incidentfree
transportation risks for transport of spent nuclear fuel to Yucca Mountain were evaluated in
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
PWR Axial Profile Evaluation
PWR Axial Profile Evaluation
This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) initiated a research program
to support the development of technical bases and guidance that would facilitate the implementation of burnup
credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of
investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for
assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial