Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada
Evaluation of a Spent Fuel Repository at Yucca Mountain, Nevada
In June 2008, the U.S. Department of Energy (DOE) submitted a license application to the U.S. Nuclear Regulatory Commission (NRC) for the construction of a geologic repository at Yucca Mountain, Nevada, for the disposal of spent nuclear fuel and high-level radioactive waste. The license application was accepted for formal NRC review in September 2008. Throughout the more than 20-year history of the Yucca Mountain project, EPRI has performed independent assessments of key technical and scientific issues to facilitate an understanding of overall repository performance.
Revisiting America's Nuclear Waste Policy
Revisiting America's Nuclear Waste Policy
With the first 100 days of the Obama Administration behind us, the Institute for 21st Century Energy presents
this nuclear waste policy document that recounts the history of the country’s nuclear waste policy, discusses
the mechanics of the issue, and off ers specifi c recommendations to the Obama Administration and the
U.S. Congress.
Two weeks aft er the 2008 presidential election, the Institute released dozens of energy policy recommendations for
the incoming administration and 111th Congress. Ten recommendations focused on committing to and expanding
Consolidated Interim Storage of Commercial Spent Nuclear Fuel
Consolidated Interim Storage of Commercial Spent Nuclear Fuel
Approximately 54,000 tons of spent nuclear fuel are stored at operating nuclear power
plants and several decommissioned power plants throughout the country. Spent fuel
storage at these sites was never intended to be permanent. The current Federal plan is to
place the fuel in a repository for permanent disposal in Nevada at Yucca Mountain.
Recently, appropriations committees in Congress suggested building one or more Federal
sites for consolidated interim storage of spent fuel. Several reasons were identified. The
Yucca Mountain - Nevada's Perspective
Yucca Mountain - Nevada's Perspective
Yucca Mountain—that barren rise in the desert ninety miles from Las Vegas—is the nation‘s only site identified for the potential location of the first ge ological repository for commercially-generated HLNW and SNF. Many assume
that Yucca Mountain has geologic and climatic qualities that make it uniquely
suitable to isolate the thousands of metric tons of the world‘s most lethal, long lived waste currently accumulating at 104 operating nuclear power plants across the United States.
Unfortunately, Yucca Mountain is an exceptionally bad site,
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III - Review of National Repository Programs
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III - Review of National Repository Programs
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has left the U.S. program for management of used fuel and high level radioactive waste (HLW) in a state of uncertainty.
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Underlying Yucca Mountain: The Interplay of Geology and Policy in Nuclear Waste Disposal
Nuclear waste disposal in the USA is a difficult policy issue infused with
science, technology, and politics. This issue provides an example of the co-production
of scientific knowledge and politics through public policy. The proponents of a
repository site at Yucca Mountain, Nevada, argue that their decision to go ahead
with the site is based on ‘sound science’, but the science they use to uphold their
decision is influenced by politics. In turn, the politics of site selection has been altered
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II--U.S. Regulations for Geologic Disposal
U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded sporadically over a three-decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA) codifying a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of the three remaining candidates for continued investigation.
EPRI Yucca Mountain Total System Performance Assessment Code (IMARC) Version 10
EPRI Yucca Mountain Total System Performance Assessment Code (IMARC) Version 10
Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel (SNF) and high level radioactive waste (HLW) at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based evaluations.
International Review Team Report: A Peer Review of the Yucca Mountain IMARC Total System Performance Assessment EPRI Model
International Review Team Report: A Peer Review of the Yucca Mountain IMARC Total System Performance Assessment EPRI Model
Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel and high level radioactive waste at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based evaluations.
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs
EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has left the U.S. program for management of used fuel and high level radioactive waste (HLW)
in a state of uncertainty. In concert with this major policy reset and in response to the resulting
policy vacuum, the President directed the Energy Secretary to establish the Blue Ribbon
Commission on America’s Nuclear Future (BRC) “…to conduct a comprehensive review of
policies for managing the back end of the nuclear fuel cycle and to provide recommendations for
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I --The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I --The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act
U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of the three remaining candidates for continued investigation.
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II --U.S. Regulations for Geologic Disposal
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II --U.S. Regulations for Geologic Disposal
U.S. efforts to site and construct a deep geologic repository for used fuel and high level
radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late
1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This
legislation codified a national approach for developing a deep geologic repository. Amendment
of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S.
program, most notably the selection of Yucca Mountain as the only site of the three remaining
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned
The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.
Spent Nuclear Fuel Transportation: An Overview
Spent Nuclear Fuel Transportation: An Overview
Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility.
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.
Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"
Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"
In May 2003, The National Academy of Sciences (NAS) formed a Committee on Transportation of Radioactive Waste (NAS Committee) to examine the transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States. The focus of this study was on the transportation of SNF in the United States.
Program on Technology Innovation: Room at the Mountain
Program on Technology Innovation: Room at the Mountain
Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI report 1013523.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport PWR (HEU Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Pressurized Water Reactor (PWR) (Ref. 1). The Shippingport PWR SNF has been considered for disposal at the proposed Yucca Mountain site.
Isotopic Generation and Confirmation of the BWR Appl. Model
Isotopic Generation and Confirmation of the BWR Appl. Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from boiling water reactors (BWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (Reference 7.1).
Managing Nuclear Waste - A Better Idea
Managing Nuclear Waste - A Better Idea
All activities which involve the use of radioactive material inevitably result in nuclear waste as a by-product of their operation. Most of the waste produced by such activities as medical diagnosis and therapy, field and laboratory research, and industrial processes is low-level radioactive waste—primarily small amounts of radioactivity in a large volume of matter.
Drift Scale THM Model
Drift Scale THM Model
This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts.
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating long-term waste package performance in the total system performance assessment (TSPA). The waste package design for the license application is a double-wall waste package placed underneath a protective drip shield (SNL 2007 [DIRS 179394]; SNL 2007 [DIRS 179354]). The WPOB will be constructed of Alloy 22 (UNS N06022) (SNL 2007 [DIRS 179567], Section 4.1.1.6), a highly corrosion-resistant nickel-based alloy.
Acceptance Priority Ranking & Annual Capacity Report
Acceptance Priority Ranking & Annual Capacity Report
The Nuclear Waste Policy Act of 1982, as amended (the Act), assigns the Federal Government the responsibility for the disposal of spent nuclear fuel and high-level waste. Section 302a of the Act authorized the Secretary to enter into contracts with the owners and generators of commercial spent nuclear fuel and or high level waste. The Standard Contract for Disposal of Spent Nuclear Fuel and or High Level Radioactive Waste (Standard Contract) established the contractual mechanism for the Department's acceptance and disposal of spent nuclear fuel and high level waste.