Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Aspects of Governance in the Practical Implementation of the Concept of Reversibility for Deep Geological Disposal
Aspects of Governance in the Practical Implementation of the Concept of Reversibility for Deep Geological Disposal
The European project COWAM in Practice (CIP) was aimed to lead for three years (2007-2009) a process of monitoring, analyzing and evaluating the governance linked with radioactive waste management. This project, in cooperation with a research group and stakeholders, was conducted in parallel in 5 European countries (Spain, France, United Kingdom, Romania, Slovenia).
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories.
An Historical and Prospective View of Romanian Decision Making in the Nuclear Domain
An Historical and Prospective View of Romanian Decision Making in the Nuclear Domain
The following graphics were developed by NF Marin Constantin (INR) for presentation and discussion at the 2nd NSG meeting in Romania (January 2008). 1. DMP for LILW Repository in Romania - Main Phases 2. Romanian History of Nuclear Power - Main Facts and Decisions 3. Cernavoda Area DMP: Dialogue Planning Including CIP Actions 4. Hypothetical Nuclear Industry Formulation of the DMP Stakes and Issues 5. Hypothetical Public Formulation of the DMP Stakes and Issues 6. How to Improve the Public Contribution to the DMP? Proposal for NSG Discussion
D1-9 Prospective Case Study - Romania
D1-9 Prospective Case Study - Romania
Impact of Nuclear Information on Young People's Knowledge and Attitudes: Methods/Participatory tools in an Educational Program WP1
Impact of Nuclear Information on Young People's Knowledge and Attitudes: Methods/Participatory tools in an Educational Program WP1
Despite in Romania nuclear research activities were started in early 50s, the nuclear power is very young. First NPP, Cernavoda Unit 1, about 600 MWe, was in operation since 1996. Next unit (Cernavoda Unit2) will be in operation at the end of 2007. Therefore, a relative low amount of high level waste was produced. However, some problems already exists in Romania, mainly related to historical radioactive wastes released by nuclear industry and research.