Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
Screening Analysis of Criticality Features, Events, and Processes for License Application
Screening Analysis of Criticality Features, Events, and Processes for License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application
This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MODS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
slides - Cumulative Impact of Industry and NRC Actions
slides - Cumulative Impact of Industry and NRC Actions
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
NRC/NEI, January 24, 2014 Public Meeting Presentations
NRC/NEI, January 24, 2014 Public Meeting Presentations
NRC/NEI, January 24, 2014 Public Meeting Presentations
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Slides - Retrievability, Cladding Integrity, and Safety Handling during Storage and Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
NRC Waste Confidence Rulemaking, Federal Register, 1984, 1990, 1999, and 2008
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT SECOND NATIONAL REPORT
This report describes the actions taken in Argentina on the safety of spent fuel management
(SF) and on the safety of radioactive waste management, in order to provide evidence of the
fulfillment of its obligations under the Joint Convention. To facilitate the reading and a better
understanding of this report a summary of those parts of the 1st Report that were considered
necessary have been included.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT THIRD NATIONAL REPORT
The present National Report describes the actions taken in Argentina on the safety of spent fuel
(SF) management and on the safety of radioactive waste (RW) management, in order to provide
evidence of the fulfilment of the obligations derived from the Joint Convention. To facilitate the
reading and a better understanding, it has been decided to include a summary of those parts of
the two prior National Reports that are considered necessary in order to comply with this
objective.
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments
In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
Overview of the Nuclear Regulatory Commission and Its Regulatory Process for the Nuclear Fuel Cycle for Light Water Reactors
This paper provides a brief description of the United States Nuclear Regulatory Commission (NRC) and its regulatory process for the current nuclear fuel cycle for light water power reactors (LWRs). It focuses on the regulatory framework for the licensing of facilities in the fuel cycle. The first part of the paper provides an overview of the NRC and its regulatory program including a description of its organization, function, authority, and responsibilities.
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
EQ6 Calculations for Chemical Degradation of Pu-Ceramic Waste Packages
In this study, the long-term geochemical behavior of waste package (WP), containing Pu-ceramic, was modeled. The ceramic under consideration contains Ti, U, Pu, Gd and Hf in a pyrochlore structure; the Gd and Hf stabilize the mineral structure, but are also intended to provide criticality control. The specific study objectives were to determine:
1) the extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial package configuration (such that it can be effective in preventing criticality), and
slides - Industry Response to NRC's Request for Comments on Retrievability, Cladding Integrity and 10 CFR 71/72 Alignment
slides - Industry Response to NRC's Request for Comments on Retrievability, Cladding Integrity and 10 CFR 71/72 Alignment
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
slides - Generic Communications and Guidance on Spent Fuel Storage & Transportation
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
TRIGA Fuel Phase I and II Criticality Calculation
TRIGA Fuel Phase I and II Criticality Calculation
The purpose of this calculation is to characterize the criticality aspect of the codisposal of TRIGA (Training, Research, Isotopes, General Atomic) reactor spent nuclear fuel (SNF) with Savannah River Site (SRS) high-level waste (HLW). The TRIGA SNF is loaded into a Department of Energy (DOE) standardized SNF canister which is centrally positioned inside five-canister defense SRS HLW waste package (WP). The objective of the calculation is to investigate the criticality issues for the WP containing the five SRS HLW and DOE SNF canisters in various stages of degradation.
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
Second Waste Package Probabilistic Criticality Analysis: Generation and Evaluation of Internal Criticality Configurations
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to provide an evaluation of the criticality potential within a waste package having some or all of its contents degraded by corrosion and removal of neutron absorbers. This analysis is also intended to provide an estimate of the consequences of any internal criticality, particularly in terms of any increase in radionuclide inventory. These consequence estimates will be used as part of the WPD input to the Total System Performance Assessment.
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form
The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister
The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.
Radiolytic Specie Generation from Internal Waste Package Criticality
Radiolytic Specie Generation from Internal Waste Package Criticality
The effects of radiation on the corrosion of various metals and alloys, particularly with respect to in-reactor processes, has been discussed by a number of authors (Shoesmith and King 1998, p.2). Shoesmith and King (1998) additionally discuss the effects of radiation of the proposed Monitored Geologic Repository (MGR) Waste Package (WP) materials. Radiation effects on the corrosion of metals and alloys include, among other things, radiolysis of local gaseous and aqueous environments lead to the fixation of nitrogen as NO, NO2, and especially HN03 (Reed and Van Konynenburg 1988, pp.
Waste Control Specialists / NRC pre-application public meeting slides
Waste Control Specialists / NRC pre-application public meeting slides
These slides were presented by Waste Control Specialists LLC (WCS) to the NRC at the June 16, 2015 pre-application public meeting at the NRC offices in Rockville, Maryland.
NRC SFST ISG-2: Fuel Retrievability
NRC SFST ISG-2: Fuel Retrievability
This Interim Staff Guidance (ISG) provides guidance to the staff for determining if
storage systems to be licensed under 10 CFR Part 72 allow ready retrieval of spent fuel.
This guidance is not a regulation or a requirement.
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
NRC ISG-1: Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function
This Interim Staff Guidance (ISG) provides guidance to the staff on classifying spent nuclear
fuel as either (1) damaged, (2) undamaged, or (3) intact, before interim storage or
transportation. This is not a regulation or requirement and can be modified or superseded by
an applicant with supportable technical arguments.
Revision 2
NRC SFST ISG-3: Post Accident Recovery and Compliance with 10 CFR 72.122(l)
NRC SFST ISG-3: Post Accident Recovery and Compliance with 10 CFR 72.122(l)
Compliance with 10 CFR 72.122(l) has been interpreted to mean that a licensee, during any
point in the storage cycle, must have a means of retrieving and repackaging individual fuel
assemblies even after an accident. The staff has reevaluated this interpretation.