Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s
Stakeholder Involvement in Decision Making: A Short Guide to Issues, Approaches and Resources
Stakeholder Involvement in Decision Making: A Short Guide to Issues, Approaches and Resources
Radioactive waste management is embedded in broader societal issues such as the
environment, risk management, energy, health policy and sustainability. In all
these fields, there is an increasing demand for public involvement, participation
and engagement. Involvement may take different forms at different phases and
can include sharing information, consulting, dialoguing or deliberating on
decisions with relevant stakeholders. Stakeholder involvement should be seen as a
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
Our basic position is that the outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
Stakeholder Involvement and Confidence in the Process of Decision-making for the Disposal of Spent Nuclear Fuel in Finland
CORWM’S ADVICE TO GOVERNMENT ON OPTIONS FOR THE ACCELERATION OF THE IMPLEMENTATION OF GEOLOGICAL DISPOSAL
CORWM’S ADVICE TO GOVERNMENT ON OPTIONS FOR THE ACCELERATION OF THE IMPLEMENTATION OF GEOLOGICAL DISPOSAL
This paper is a response to a request from the Department of Energy and Climate Change (DECC) for CoRWM’s advice on the 2011 review of options for accelerating the geological disposal programme carried out by the Radioactive Waste Management Directorate (RWMD) of the Nuclear Decommissioning Authority (NDA).
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
The long-term governance of radioactive waste is complex socio-technical issue. The disposition of radioactive waste is decided on ethical grounds, having to take into account a variety of other dimensions (society, economy, ecology, politics, time, space, and technology). Thereto, a study of variants is required. Decision theory, in principle, takes diverse options as a starting point begin as the basis of a decision.
WP 2 Appendix 8 Mechanisms for Local Influence on National Decision Making Processes in Radioactive Waste Management
WP 2 Appendix 8 Mechanisms for Local Influence on National Decision Making Processes in Radioactive Waste Management
This document develops further the questions offered to stakeholders in the Berlin Meeting (see Appendix). It describes mechanisms that local stakeholders can use to influence national decision-making processes in radioactive waste management.
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
The outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
Final Report: Influence of Local Actors on National Decision-making Processes WP2
Final Report: Influence of Local Actors on National Decision-making Processes WP2
Work Package 2 (WP2) focused on the ways in which local stakeholders can influence national decision-making processes on radioactive waste management (RWM). The participants in WP2 were particularly interested in examining how local stakeholders could contribute to national debates. Their interest stemmed from the fact that participants from France, Spain and the United Kingdom — who made up the majority of the WP2 group — were engaged, as stakeholders, in the decision-making processes that were under way in each of those countries.
Identifying remaining socio-technical challenges at the national level: Hungary
Identifying remaining socio-technical challenges at the national level: Hungary
This paper summarises the history of RWM in Hungary, with a special attention to changing decision making approaches, social conflicts, and socio-technical challenges. First the institutional background of RWM is outlined. Next, efforts to build facilities for the management of low- and intermediatelevel waste (L/ILRW) and high-level waste (HLW) are summarized. This is followed by the short description of remaining socio-technical challenges. Finally, changes in decision-making approaches and tools are analysed.
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Quality of Decision-making Processes: Decision-making processes in Radioactive Waste Governance - Insights and Recommendations WP3
Work Package 3 (WP 3) set out to provide practical recommendations for the design and implementation of a “robust” decision-making process (DMP) in radioactive waste governance/governance of radioactive waste management (RWG).
Structuring local communities and development of local democracy for engagement in Radioactive Waste Management governance
Structuring local communities and development of local democracy for engagement in Radioactive Waste Management governance
The "COWAM SPAIN" Initiative and the Current Project Under Consideration for a National Interim Storage Facility for Spent Fuel and High Level Waste
Stepwise Approach to the Long-Term Management of Radioactive Waste
Stepwise Approach to the Long-Term Management of Radioactive Waste
A summary of the view of the Nuclear Energy Agency Forum on Stakeholder Confidence with regard to stepwise decision making in the context of long-term management of radioactive waste.