Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Screening for Beryllium Disease Among Construction Trade Workers at Department of Energy Nuclear Sites
Screening for Beryllium Disease Among Construction Trade Workers at Department of Energy Nuclear Sites
Background To determine whether current and former construction workers are at
significant risk for occupational illnesses from work at the Department of Energy’s (DOE)
nuclear weapons facilities, screening programs were undertaken at the Hanford Nuclear
Reservation, Oak Ridge Reservation, and the Savannah River Site.
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program
The success of the Civilian Radioactive Waste Management Program of the U.S.
Department of Energy (DOE) is critical to U.S. ability to manage and dispose of
nuclear waste safely--and to the reestablishment of confidence in the nuclear energy
option in the United States. The program must conform with all applicable standards
and, in fact, set the example for a national policy on the safe disposal of radioactive
waste.
The Secretary of Energy has recently completed an extensive review of the
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
(AFR) criticality safety analyses be validated against experimental measurements. If credit for the
negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark AFR criticality analysis methods using selected critical
configurations from commercial pressurized-water reactors (PWR).
REPORT TO THE SECRETARY OF ENERGY ON THE CONCLUSIONS AND RECOMMENDATIONS OF THE ADVISORY PANEL ON ALTERNATIVE MEANS OF FINANCING AND MANAGING (AMFM) RADIOACTIVE WASTE MANAGEMENT FACILITIES
REPORT TO THE SECRETARY OF ENERGY ON THE CONCLUSIONS AND RECOMMENDATIONS OF THE ADVISORY PANEL ON ALTERNATIVE MEANS OF FINANCING AND MANAGING (AMFM) RADIOACTIVE WASTE MANAGEMENT FACILITIES
The AMFM Panel has submitted its report "Managing Nuclear
Waste - A Better Idea" to the Secretary. The report contains six
general conclusions and one general recommendation in Chapter
XII. In addition, Chapter X contains 14 specific enhancements
("Key Components of Any Waste Management Structure") that are
recommended for implementation by the Office of Civilian Radioactive
Waste Management (OCRWM) or any alternative organization.
This paper lists and discusses the 6 general conclusions, the
AN ANALYSIS OF INJURIES AT DEPARTMENT OF ENERGY WORK SITES
AN ANALYSIS OF INJURIES AT DEPARTMENT OF ENERGY WORK SITES
The Construction Industry Research and Policy Center (CIRPC) at the University of Tennessee was awarded a contract by the Center to Protect Workers’ Rights, under their grant program with the National Institute of Occupational Safety and Health (NIOSH), to analyze injuries of employees of the U. S. Department of Energy (DOE) and their contractors’ working at DOE work sites. The injury data analyzed were injuries recorded in DOE’s Computerized Accident Incident Reporting System (CAIRS).
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Innovative Stakeholder Involvement Processes in Department of Energy Programs - A Selective Accounting
Innovative Stakeholder Involvement Processes in Department of Energy Programs - A Selective Accounting
The Blue Ribbon Commission staff requested this paper cataloging innovative stakeholder involvement programs within the Department of Energy (DOE). I reviewed a variety of material on public involvement, including papers and presentations on stakeholder involvement in DOE programs, published presentations and comments to the BRC, and research reports on stakeholder and public involvement.
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit for the negative
reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical
configurations from commercial pressurized-water reactors.
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been
modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system.
The SAS2H sequence uses transport methods combined with the depletion and decay capabilities
of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup
history. Results of these calculations are compared with chemical assay measurements of spent fuel
inventories for each sample. Results show reasonable agreement between measured and predicted
Surveillance of Respiratory Diseases Among Construction and Trade Workers at Department of Energy Nuclear Sites
Surveillance of Respiratory Diseases Among Construction and Trade Workers at Department of Energy Nuclear Sites
Background Medical screening programs were begun in 1996 and 1997 at three Department
of Energy (DOE) nuclear weapons facilities (Hanford Nuclear Reservation, Oak
Ridge, and the Savannah River Site) to evaluate whether current and former construction
workers are at significant risk for occupational illnesses. The focus of this report is
pneumoconiosis associated with exposures to asbestos and silica among workers enrolled
in the screening programs through September 30, 2001.
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
Surveillance of Hearing Loss Among Older Construction and Trade Workers at Department of Energy Nuclear Sites
Surveillance of Hearing Loss Among Older Construction and Trade Workers at Department of Energy Nuclear Sites
Background Medical screening programs at three Departments of Energy (DOE)
nuclear weapons facilities (Hanford Nuclear Reservation, Oak Ridge, and the Savannah
River Site) have included audiometric testing since approximately 1996. This report
summarizes hearing evaluations through March 31, 2003.
Methods Occupational examinations included a medical history, limited physical
examination, and tests for medical effects from specific hazards, including audiometric
testing. Hearing thresholds by frequency for DOE workers were compared to agestandardized
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor
have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code
system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the
Waste Package Design team at the Yucca Mountain Project in the United States, who performed
the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical
measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original "fresh" composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
Mortality of Older Construction and Craft Workers Employed at Department of Energy (DOE) Nuclear Sites
Mortality of Older Construction and Craft Workers Employed at Department of Energy (DOE) Nuclear Sites
Background The U.S. Department of Energy (DOE) established medical screening
programs at the Hanford Nuclear Reservation, Oak Ridge Reservation, the Savannah
River Site, and the Amchitka site starting in 1996.Workers participating in these programs
have been followed to determine their vital status and mortality experience through
December 31, 2004.
Methods A cohort of 8,976 former construction workers from Hanford, Savannah River,
Oak Ridge, and Amchitka was followed using the National Death Index through December
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
This report is part of a report series designed to document benchmark-quality radiochemical assay data
against which computer code predictions of isotopic composition for spent nuclear fuel can be validated
to establish the uncertainty and bias associated with the code predictions. The experimental data analyzed
in the present report were acquired from two international programs: (1) ARIANE and (2) REBUS, both
coordinated by Belgonucleaire. All measurements include extensive actinide and fission product data of
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original $fresh# composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic
composition by the SCALE system depletion analysis was assessed using data presented in the report.
Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were
compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2,
and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of
predicted and measured concentrations for 14 actinides and 37 fission and activation products.
Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste 3
Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste 3
The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel1 and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities.
Highly Enriched Uranium: Striking a Balance, rev. 1
Highly Enriched Uranium: Striking a Balance, rev. 1
In February 1996, the Department of Energy (DOE) commissioned a comprehensive effort to document and declassify the United States inventory and other information needed to present a complete picture of the production, acquisition, and utilization of highly enriched uranium (HEU). Highly Enriched Uranium:Striking A Balance presents the results of that study.
Commercial Nuclear Waste: Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned
Commercial Nuclear Waste: Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned
DOE decided to terminate the Yucca Mountain repository program because, according to DOE officials, it is not a workable option and there are better solutions that can achieve a broader national consensus. DOE did not cite technical or safety issues. DOE also did not identify alternatives, but it did create a Blue Ribbon Commission to evaluate and recommend alternatives.
Nuclear Energy Research and Development Roadmap
Nuclear Energy Research and Development Roadmap
To achieve energy security and greenhouse gas (GHG) emission reduction objectives, the United States must develop and deploy clean, affordable, domestic energy sources as quickly as possible. Nuclear power will continue to be a key component of a portfolio of technologies that meets our energy goals. This document provides a roadmap for the Department of Energy’s (DOE’s) Office of Nuclear Energy (NE) research, development, and demonstration activities that will ensure nuclear energy remains viable energy option for the United States.
The Budget for Fiscal Year 2015: Department of Energy
The Budget for Fiscal Year 2015: Department of Energy
This is a section of the Federal Budget for 2015.