Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Dissolved Concentration Limits of Elements with Radioactive Isotopes
Dissolved Concentration Limits of Elements with Radioactive Isotopes
The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments.
EQ6 calculations for Chemical Degradation of Navy Waste Packages
EQ6 calculations for Chemical Degradation of Navy Waste Packages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and , 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package.
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of Enrico Fermi Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Emico Fermi Atomic Power Plant (Ref. 1). The Fermi fuel has been considered for disposal at the potential Yucca Mountain site.
EQ6 Calculations for Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages
EQ6 Calculations for Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages
Fuel from the Fast Flux Test Facility ' (FFTF) has been considered for disposal at the proposed
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
EQ6 Calculations for Chemical Degradation of TRIGA Codisposal Waste PacKages
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
EQ6 Calculation for Chemical Degradation of Shippingport LWBR (Th/U Oxide) Spent Nuclear Fuel Waste Packages
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
Postclosure Analysis of the Range of Design Thermal Loadings
Postclosure Analysis of the Range of Design Thermal Loadings
This report presents a two-phased approach to develop and analyze a “thermal envelope” to represent the postclosure response of the repository to the anticipated range of repository design thermal loadings. In Phase 1 an estimated limiting waste stream (ELWS) is identified and analyzed to determine the extremes of average and local thermal loading conditions. The coldest thermal loading condition is represented by an emplacement drift loaded exclusively with high-level radioactive waste (HLW) and/or defense spent nuclear fuel (DSNF).
Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems
Qualification of Thermodynamic Data for Geochemical Modeling of Mineral–Water Interactions in Dilute Systems
This report is developed from Technical Work Plan for: Thermodynamic Databases for Chemical Modeling (BSC 2006 [DIRS 177885]). The purpose of this analysis report is to update the thermochemical database data0.ymp.R4 (Output DTN: SN0410T0510404.002). Various data have been added, corrected, or corroborated, partly in response to four Condition Reports (CRs): CR 6489, CR 6731, CR 7542, and CR 7756. The most notable changes are a general revision of phosphate data to achieve consistency with the recommendations from the Committee on Data for Science and Technology (CODATA) (Cox. et al.
In-Drift Precipitates/Salts Model
In-Drift Precipitates/Salts Model
This report documents the development and validation of the in-drift precipitates/salts (IDPS) process model. The IDPS process model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the total system performance assessment (TSPA). Application of the model in support of TSPA is documented in Engineered Barrier System: Physical and Chemical Environment (BSC 2005 [DIRS 175083]).
Engineered Barrier System: Physical and Chemical Environment
Engineered Barrier System: Physical and Chemical Environment
The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. This report documents the development of a new process-level model, the near-field chemistry (NFC) model, and develops two abstraction models.
OECD/NEA: Austria
OECD/NEA: Austria
Radioactive Waste Management and Decommissioning in Austria
Radioactive Waste Management and Decommissioning in Austria
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Austrian National Report
In Austria there is neither a nuclear power plant (NPP) nor any other fuel cycle facility in op- eration. One NPP was constructed in Zwentendorf in the 1970s, but, as a consequence of the negative vote in a referendum never put into operation. Two out of three research reactors in Austria have been shut down (ASTRA Seibersdorf in 2000, SIEMENS Argonaut Graz in 2004) and are currently under decommissioning. The remaining TRIGA research reactor in Vienna is still in operation. Spent nuclear fuel is stored on site in wet or dry storage facilities.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting of the Contracting Parties, 15 to 24 2006, Vienna, Austria, Summary Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting of the Contracting Parties, 15 to 24 2006, Vienna, Austria, Summary Report
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention describing how such safe management could be achieved: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Third Review Meeting of the Contracting Parties, 11 to 20 May 2009, Vienna, Austria, Summary Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Third Review Meeting of the Contracting Parties, 11 to 20 May 2009, Vienna, Austria, Summary Report
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention with the objective of achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Fourth Review Meeting of the Contracting Parties, 14 to 23 May 2012, Vienna, Austria, Final Summary Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Fourth Review Meeting of the Contracting Parties, 14 to 23 May 2012, Vienna, Austria, Final Summary Report
1. Recognizing the importance of the safe management of spent nuclear fuel and radioactive waste, the international community agreed upon the necessity of adopting a convention with the objective of achieving and maintaining a high level of safety worldwide in spent fuel and radioactive waste management: this was the origin of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (the “Joint Convention”), which was adopted on 5 September 1997 and entered into force on 18 June 2001. 2.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, First Review Meeting of the Contracting Parties 3 to 14 November 2003, Vienna, Austria, Summary Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, First Review Meeting of the Contracting Parties 3 to 14 November 2003, Vienna, Austria, Summary Report
1. The operation of nuclear reactors whether for the purposes of electricity production or research, generates spent nuclear fuel and radioactive waste. Other activities also generate radioactive waste. The recognition by the international community of the importance of ensuring the safety of the management of spent fuel and the safety of the management of radioactive waste, led to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Convention).