Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
Reversibility and Retrievability in Planning for Geological Disposal of Radioactive Waste-Proceedings of the "R&R" International Conference and Dialogue, December 14-17, 2010, Reims, France
In 2007 the OECD Nuclear Energy Agency (NEA) Radioactive Waste Management Committee
(RWMC) launched a four-year project on the topics of reversibility and retrievability in geological
disposal. The goal of the project studies and activities (www.oecd-nea.org/rwm/rr) was to
acknowledge the range of approaches to reversibility and retrievability (R&R), rather than to
recommend a specific approach, and to provide a basis for reflection rather than to lead towards
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volume I and Volume II (Appendices)
Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volume I and Volume II (Appendices)
This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation. Relevant policy questions this study can help inform include the following: Is a “one-size-fits–all” repository a good strategic option for disposal? Do
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
UFD Storage and Transportation - Transportation Working Group Report
UFD Storage and Transportation - Transportation Working Group Report
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011).
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Geological Disposal of Radioactive Waste, Safety Requirements No. WS-R-4
Cost Estimation Inputs for SNF Geologic Disposal Concepts
Cost Estimation Inputs for SNF Geologic Disposal Concepts
A set of 16 geologic disposal concepts is described in sufficient detail for rough-order-of-magnitude repository cost estimates, for disposal of spent nuclear reactor fuel in generic crystalline, argillaceous, and salt host geologic media. The description includes total length, diameter, and volume for all underground shafts, ramps, drifts and large-diameter borings. Basic types of ground support are specified. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel, but concepts are described in terms of modular panels each containing 10,000 MT.
Dossier 2005 Argile-Architecture and Management of a Geological Repository
Dossier 2005 Argile-Architecture and Management of a Geological Repository
The Law of 30 December 1991 Loi n¯ 91-1381 du 30 dÇcembre 1991 relative aux recherches sur la gestion des dÇchets radioactifs. conferred on Andra the task of assessing the feasibility of a high-level, long-lived waste (HLLL waste) repository in a deep geological formation. This volume of the Dossier 2005 Argile reports on the results of the study from the standpoint of the architecture and management of such a repository. It is based on the characteristics of the clay formation studied in an underground research laboratory located in the Meuse and Haute-Marne departments.
Slides - Geologic Disposal - Elements of Technical Credible, Workable, and Publicly Acceptable Regulations
Slides - Geologic Disposal - Elements of Technical Credible, Workable, and Publicly Acceptable Regulations
Presented to the Blue Ribbon Commission on America's Nuclear Future Subcommittee on Disposal
Summary Statement - Regulations for Geological Disposal of High-Level Radioactive Waste
Summary Statement - Regulations for Geological Disposal of High-Level Radioactive Waste
Presented on September 2010 to the Blue Ribbon Commission on America's Nuclear Future (Disposal Subcommittee)
Slides - Briefing on the Draft Area Recommendation Report - Crystalline Repository Project
Slides - Briefing on the Draft Area Recommendation Report - Crystalline Repository Project
Crystalline Repository Project Briefing
Environmental Views on the Geologic Disposal of Nuclear Materials
Environmental Views on the Geologic Disposal of Nuclear Materials
Presented at the International Conference on Geologic Repositories, Denver, CO, November 1, 1999
Geological Disposal of Nuclear Waste
Geological Disposal of Nuclear Waste
19th Annual Symposium-Geological Disposal of Nuclear Waste
Monitoring of Geological Disposal Facilities: Technical and Societal Aspects
Monitoring of Geological Disposal Facilities: Technical and Societal Aspects
Each and every geological disposal project requires the collection of large amounts of information on
its progress throughout the facility’s lifecycle. This information is based on the monitoring and
surveillance of the selected site, built structures and their surrounding environment. Monitoring is carried
out to assist in the decision-making process, to collect site-relevant information for the creation of an
environmental database, to gain an understanding and to verify the performance of the disposal system, to
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
Socio-Technical Challenges to Implementing Geological Disposal: a Synthesis of Findings from 14 Countries
This report aims to clarify the dynamics of socio-technical challenges in the implementation of geological disposal (GD) for High Level Waste (HLW) and Spent Nuclear Fuel (SNF). Drawing on the 14 country reports produced within InSOTEC’s WP1 the synthesis focuses on socio-technical challenges that appear across national contexts. The synthesis report elucidates issues made visible through bringing together the analyses of different national contexts.
Decision-making and Responsibilities within the Process of Providing Robust Interim Storage and the Implementation of Geological Disposal
Decision-making and Responsibilities within the Process of Providing Robust Interim Storage and the Implementation of Geological Disposal
This paper summarises CoRWM’s understanding of:<br><br>The roles and responsibilities of the organisations that are involved in the management of radioactive waste, <br>Decision-making on Government policy, <br>Decision-making on the governance of the NDA, <br>Decision-making on waste conditioning, packaging and storage and <br>Decision-making in the implementation of geological disposal.
2008 Activity Report
Delay in Finnish Repository Licence Review
Delay in Finnish Repository Licence Review
The Finnish nuclear regulator needs another six months to review Posiva's application to build a waste encapsulation plant and a final repository at Olkiluoto.