Siting Experience Documents Only
Publication Date
Country
Keywords
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
Intact and Degraded Mode Criticality Calculations for the Codisposal of TMI-2 Spent Nuclear Fuel in a Waste Package
The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Three Mile Island- Unit 2 (TMI-2) spent nuclear fuel (SNF) in canisters. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (Civilian Radioactive Waste Management System Management and Operating Contractor [CRWMS M&O] 2000b, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).
Nondestructive Assay of Nuclear Low-Enriched Uranium Spent Fuels for Burnup Credit Application
Nondestructive Assay of Nuclear Low-Enriched Uranium Spent Fuels for Burnup Credit Application
Criticality safety analysis devoted to spent-fuel storage and transportation has to be conservative in order to be sure no accident will ever happen. In the spent-fuel storage field, the assumption of freshness has been used to achieve the conservative aspect of criticality safety procedures. Nevertheless, after being irradiated in a reactor core, the fuel elements have obviously lost part of their original reactivity. The concept of taking into account this reactivity loss in criticality safety analysis is known as burnup credit.
OECD/NEA: Belgium
OECD/NEA: Belgium
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium, Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Second Review Meeting (May 2006), Answers to the Questions of Contracting Parties on the National Report submitted by Belgium
Kingdom of Belgium Fourth Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report
Kingdom of Belgium Fourth Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report
On 8 December 1997 Belgium signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention by the Law of 2 August 2002. The ratification followed on 5 September 2002. The Convention became effective on 4 December 2002, i.e. 90 days following ratification. Belgium belongs to the group of Contracting Parties having at least one operational nuclear power plant on their territory.
Technical overview of the SAFIR 2 report: Safety Assessment and Feasibility Interim Report 2
Technical overview of the SAFIR 2 report: Safety Assessment and Feasibility Interim Report 2
This document is the technical overview of the SAFIR 2 report that synthesises all of the technical and scientific knowledge available at the end of the second phase (1990–2000) of the ONDRAF/NIRAS programme of methodological research and development on the final disposal of category B and C waste in a poorly-indurated clay formation. The SAFIR 2 report will be handed over by ONDRAF/NIRAS to its supervisory Minister at the beginning of 2002, after publication approval by its Board of Directors.
Identifying remaining socio-technical challenges at the national level: Belgium
Identifying remaining socio-technical challenges at the national level: Belgium
This report is part of the research project International Socio-Technical Challenges for Implementing Geological Disposal: InSOTEC (see www.insotec.eu), funded by the European Commission under the Seventh Framework Programme.<br/>This report is a contribution to Work Package 1 of the project, which aims to identify the most significant socio-technical challenges related to geological disposal of radioactive waste. To achieve this objective, a comparative analysis of 14 national programmes will be performed.