Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
Management of Uncertainty in Safety Cases and the Role of Risk - Workshop Proceedings
The development of radioactive waste repositories involves consideration of how the waste and the
engineered barrier systems will evolve, as well as the interactions between these and, often relatively
complex, natural systems. The timescales that must be considered are much longer than the timescales
that can be studied in the laboratory or during site characterisation. These and other factors can lead to
various types of uncertainty (on scenarios, models and parameters) in the assessment of long-term,
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
UFD Storage and Transportation - Transportation Working Group Report
UFD Storage and Transportation - Transportation Working Group Report
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011).
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project
This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB’s application for a final repository. The purposes of the safety assessment SR-Can are the following:
1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant.
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
In RD&D-Programme 92, SKB presented a partially new strategy for its activities. The new strategy entailed a focusing and concentration on the implementation of deep disposal of a limited quantity (about 800 tonnes) of encapsulated spent nuclear fuel during the coming 20-year period. Following this initial deposition, the results of the work will be evaluated, and only then will a decision be taken as to how and when regular deposition of the main body of the fuel and other long-lived nuclear waste will take place.
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
Possible Strategies for Geoscientific Classification for High-Level Waste Repository Site Selection
This work was performed to suggest possible strategies for geoscientific classifications in the siting process of a high-level repository. To develop a feasible method for geoscientific classifications, a number of factors of a philosophical character, related to the purpose of the classifications, need to be accounted for. Many different approaches can be visualized, and this report was not intended to present a complete classification methodology.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Sweden National Report
Spent fuel in Sweden emanates mainly from four commercial nuclear power plants. In addition there is one material testing reactor and one research reactor. The radioactive waste originates from the nuclear power industry as well as medical use, industry, research and consumer products.
Actual Implementation of a Spent Nuclear Fuel Repository in Sweden: Seizing Opportunities
Actual Implementation of a Spent Nuclear Fuel Repository in Sweden: Seizing Opportunities
Making the decision-making basis for nuclear waste management transparent Summary of a pre-study report
Making the decision-making basis for nuclear waste management transparent Summary of a pre-study report
Identifying remaining socio-technical challenges at the national level: Sweden
Identifying remaining socio-technical challenges at the national level: Sweden
Robust and rational decision making processes in risk society
Robust and rational decision making processes in risk society
Radioactive Waste Management and Decommissioning in Sweden
Radioactive Waste Management and Decommissioning in Sweden
OECD/NEA: Sweden
OECD/NEA: Sweden
Stakeholder Dialogue: Experience and Analysis
Stakeholder Dialogue: Experience and Analysis
The report begins with a consideration of the factors which have led to a growth in the use of dialogue processes, a clarification of key concepts and a classification of dialogue processes. A description of recent and current activities in Europe and North America is followed by discussion of the relationship of processes and contexts. This then leads to an identification of the key aims and evaluation criteria which will be used in the design of dialogue processes to be conducted in subsequent phases of the project.
Geosphere Performance Indices: Comparative measures for site selection and safety assesment of deep waste repositories
Geosphere Performance Indices: Comparative measures for site selection and safety assesment of deep waste repositories
The concept of Geosphere Perfonnance Indices (GPis) is proposed. The "performance"<br/>refers to the geosphere's capacity to retain/contain radionuclides in the event of their accidental<br/>release at some point in time. The GPis are based on the Lagrangian stochastic-analytical<br/>framework for transport in the subsurface and are believed to render useful tools in performance<br/>assessment studies in general and in the site selection process in particular.
RD&D Programme 2007: Programme for research, development, and demonstration of methods for the management and disposal of nuclear waste
RD&D Programme 2007: Programme for research, development, and demonstration of methods for the management and disposal of nuclear waste
RD&D Programme 2007 presents SKB’s plans for research, development and demonstration during<br/>the period 2008–2013. The plans for the first three-year period are for natural reasons more detailed<br/>than those for the next one.
Handling and final disposal of nuclear waste: Hard Rock Laboratory
Handling and final disposal of nuclear waste: Hard Rock Laboratory
In an international perspective, Sweden has come a long way in the development of safe and accepted systems for the management and disposal of radioactive waste. <br/><br/>A complete system for sea transport of spent nuclear fuel from the twelve Swedish nuclear reactors has been in operation since 1982. The spent nuclear fuel will be stored in CLAB for a period of about 40 years up until final disposal. The facility has been in operation since 1985. A final repository for low- and intermediate-level short-lived waste, SFR, has been in operation since April 1988.
RD&D-Programme 2004 Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research
RD&D-Programme 2004 Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, including social science research
The preceding RD&D-Programme from 2001 was concentrated on research and technology development. Research with a focus on the assessment of long-term safety was emphasized and viewpoints from previous reviews of SR 97 and RD&D-Programme 98 were dealt with in depth. SR 97 was an assessment of the long-term safety of a deep repository for spent nuclear fuel. This RD&D-Programme 2004 focuses its attention on the development of technologies for fabrication and sealing of canisters for final disposal of spent fuel.