Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 6 - App 1
In RD&D-Programme 92, SKB presented a partially new strategy for its activities. The new strategy entailed a focusing and concentration on the implementation of deep disposal of a limited quantity (about 800 tonnes) of encapsulated spent nuclear fuel during the coming 20-year period. Following this initial deposition, the results of the work will be evaluated, and only then will a decision be taken as to how and when regular deposition of the main body of the fuel and other long-lived nuclear waste will take place.
Expert Judgement in Performance Assessment
Expert Judgement in Performance Assessment
Proposals to site, construct and operate a radioactive waste disposal facility in Sweden will be supported by performance assessments (PAs). Such PAs will require a range of expert judgements to be made. As part of SKI’s preparation for reviewing SKB’s Pas and for conducting independent PAs, SKI has identified a need for further research on the treatment of expert judgement in PA.
Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management
Demonstration and Dialogue: Mediation in Swedish Nuclear Waste Management
This report analyses mediation and mediators in Swedish nuclear waste management. Mediation is about establishing agreement and building common knowledge. It is argued that demonstrations and dialogue are the two prominent approaches to mediation in Swedish nuclear waste management. Mediation through demonstration is about showing, displaying, and pointing out a path to safe disposal for inspection. It implies a strict division between demonstrator and audience.
Handling and final disposal of nuclear waste: Siting of a deep repository
Handling and final disposal of nuclear waste: Siting of a deep repository
The siting of the facilities for the disposal of spent nuclear fuel and other long-lived<br/>nuclear waste is one of the central remaining tasks within the Swedish waste programme.<br/>Work relating to the siting of the repository is being conducted in stages and will<br/>continue for most of the 1990:ies. This report describes the background to, the goals<br/>for and structure of SKB 's activities relating to the siting of a deep geological<br/>repository.
Handling and final disposal of nuclear waste. September 1989
Handling and final disposal of nuclear waste. September 1989
For those parts of the waste system that have already been taken into operation - transportation and handling systems, central interim storage facility for spent nuclear fuel (CLAB) and final repository for reactor waste (SFR)- the research and development stage has already largely been passed. The programme presented here therefore pertains primarily to the treatment and final disposal of spent fuel and the decommissioning of nuclear power plants.
Handling and final disposal of nuclear waste. September 1986
Handling and final disposal of nuclear waste. September 1986
The Act on Nuclear Activities (SFS 1984:3) obligates the owners of the Swedish nuclear power plants to<br/>jointly prepare a comprehensive programme for the research and development work and other measures<br/>required for the safe management and disposal of the waste from nuclear power.<br/>For those parts of the waste system that have already been taken into operation or are under construction - transportation and handling systems, central interim storage facility for spent nuclear fuel (CLAB) and final repository for reactor waste (SFR) - the research and development st
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 1 - 5
Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geological disposal, and research, development and demonstration: Ch 1 - 5
In RD&D-Programme 92, SKB presented a partially new strategy for its activities. The new strategy entailed a focusing and concentration on the implementation of deep disposal of a limited quantity (about 800 tonnes) of encapsulated spent nuclear fuel during the coming 20-year period. Following this initial deposition, the results of the work will be evaluated, and only then will a decision be taken as to how and when regular deposition of the main body of the fuel and other long-lived nuclear waste will take place.
Site selection - Siting of the Final Repository for Spent Nuclear Fuel
Site selection - Siting of the Final Repository for Spent Nuclear Fuel
SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection<br/>is the end result of an extensive siting process that began in the early 1990s. The strategy and<br/>plan for the work was based on experience from investigations and development work over a period<br/>of more than ten years prior to then.<br/>This document describes the siting work and SKB’s choice of site for the final repository.
From Risk Analysis to the Safety Case. Values in Risk Assessments
From Risk Analysis to the Safety Case. Values in Risk Assessments
The foundation for work related to nuclear waste management is laid by laws and outlines e.g. the responsibilities of the reactor owners and the state, as represented by the authorities. The Swedish Nuclear Fuel and Waste Management Company (SKB), as well as Posiva Oy in Finland, were set up by the reactor owners in the respective countries in response to the responsibilities of planning, conducting research and to implement the physical structures leading to a safe management of nuclear wastes.
Structure for Transparency in Nuclear Waste Management
Structure for Transparency in Nuclear Waste Management
The purpose of this report is a comparison of the structures for nuclear waste management in France, Sweden and UK. The source materials for this comparison are studies carried out in each of these countries by Syncho Ltd. over the past 5 years. The Swedish structural review was sponsored by SKI and SSI, and carried out as a pilot study during the years 1996 and 1997 (Espejo & Gill, 1998) as part of the RISCOM I project.