Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Country
Keywords
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
EQ6 Calculations for Chemical Degradation of PWR LEU and PWR MOX Spent Fuel Waste Packages
Isotopic Generation and Verification of the PWR Application Model
Isotopic Generation and Verification of the PWR Application Model
The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from pressurized water reactors (PWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (YMP 2000).
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Calculation Involving Intact PWR MOX SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this calculation is to evaluate the transient behavior and consequences of a worst- case criticality event involving intact pressurized water reactor (PWR) mixed-oxide (MOX) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR waste package (WP). This calculation will provide information necessary for demonstrating that the consequences of a worst-case criticality event involving intact PWR MOX SNF are insignificant in their effect on the overall radioisotopic inventory and on the integrity of the repository.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
Criticality Consequence Analysis Involving Intact PWR SNF in a Degraded 21 PWR Assembly Waste Package
The purpose of this analysis is to evaluate the transient behavior and consequences of a worst case criticality event involving intact pressurized water reactor (PWR) spent nuclear fuel (SNF) in a degraded basket configuration inside a 21 PWR assembly waste package (WP). The objective of this analysis is to demonstrate that the consequences of a worst case criticality event involving intact PWR SNF are insignificant in their effect on the overall radioisotopic inventory in a WP. An internal WP criticality is modeled in a manner analogous to transient phenomena in a nuclear reactor core.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
3rd WP Probabilistic Criticality Analysis: Methodology for Basket Degradation with Application to Commercial SNF
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degradedmode criticality performance.
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
WP 2 Appendix 10 Balance of Power: Principles and Good Practices for Local Stakeholders to Influence National Decision-making Processes
Our basic position is that the outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
WP 3 Quality of decision-making process Proposed Framework for Decision-making Processes
The long-term governance of radioactive waste is complex socio-technical issue. The disposition of radioactive waste is decided on ethical grounds, having to take into account a variety of other dimensions (society, economy, ecology, politics, time, space, and technology). Thereto, a study of variants is required. Decision theory, in principle, takes diverse options as a starting point begin as the basis of a decision.
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
WP 2 Appendix 9 Principles and Good Practices for Local Actors to Influence National Decision-Making Processes
The outcomes of policy-making in radioactive waste management (RWM) should be driven by the will of the people through democratic processes. Achieving this inclusiveness requires good practices to increase local influence on what is essentially a national policy process. However inclusiveness poses significant practical problems; can society afford lengthy and costly consultation processes, often perceived as inefficient and ineffective?
WP 2 Appendix 7 Influence of Local Communities on Decision Processes: Experience of Copeland and Shetland Islands
WP 2 Appendix 7 Influence of Local Communities on Decision Processes: Experience of Copeland and Shetland Islands
The focus of this case study is the concerns of two communities affected, albeit in different ways, by radioactive waste management and the decommissioning of nuclear installations. These are communities affected by the decisions of nuclear operators, regulators and national policy makers. As such they interact with these organisations and quite naturally they are concerned about their long-term sustainability.