Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories.
Long Term Governance for Radioactive Waste Management WP4
Long Term Governance for Radioactive Waste Management WP4
The purpose of COWAM2 Work Package 4 (WP4) on "e;long term governance"e; was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: (i) responsibility and ownership of radioactive waste over long term, (ii) continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and (iii) compensation and sustainable development.
LONG TERM GOVERNANCE FOR RADIOACTIVE WASTE MANAGEMENT ANNEX OF THE FINAL REPORT OF COWAM2 - WORK PACKAGE 4
LONG TERM GOVERNANCE FOR RADIOACTIVE WASTE MANAGEMENT ANNEX OF THE FINAL REPORT OF COWAM2 - WORK PACKAGE 4
The purpose of COWAM2 Work Package 4 (WP4) on "e;long term governance"e; was to identify, discuss and analyse the institutional, ethical, economic and legal considerations raised by long term radioactive waste storage or disposal on the three interrelated issues of: (i) responsibility and ownership of radioactive waste over long term, (ii) continuity of local dialogue between stakeholders and monitoring of radioactive waste management facilities, and (iii) compensation and sustainable development.
Nuclear waste management from a local perspective: Reflections for a Better Governance Final Report
Nuclear waste management from a local perspective: Reflections for a Better Governance Final Report
During the 1990s, nuclear waste programmes in nearly every concerned country met many difficulties. Nuclear waste management was seen as a technical issue, and the local communities were only involved in the last stage of the decision-making process when almost all components of the decision were already fixed. The management of high level radioactive waste is now recognised as a complex decision-making process entailing technical, ethical, social, political and economic dimensions where no solution can be reached solely on the basis of technical considerations.