Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages
A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay.
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
Destructive Examination of 3-Cycle LWR Fuel Rods from Turkey Point Unit 3 for the CLIMAX-Spent Fuel Test
The destructive examination results of five light water reactor rods from the Turkey Point Unit 3 reactor are presented. The examinations included fission gas collection and analyses, burnup and hydrogen analyses, and a metallographic evaluation of the fuel, cladding, oxide, and hydrides. The rods exhibited a low fission gas release with all other results appearing representative for pressurized water reactor fuel rods with similar burnups (28 GWd/MTU) and operating histories.
The Partnership Approach to Siting and Developing Radioactive Waste Management Facilities
The Partnership Approach to Siting and Developing Radioactive Waste Management Facilities
History shows that the search for sites for radioactive waste management facilities has been marred by conflicts and delays. Affected communities have often objected that their concerns and interests were not addressed. In response, institutions have progressively turned away from the traditional “decide, announce and defend” model, and are learning to “engage, interact and co-operate”. This shift has fostered the emergence of partnerships between the proponent of the facility and the potential host community, as shown in a recent NEA study.