Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants: A Guidance Manual for Users of Standard Technical Specifications (NUREG-0133)
This guidance manual provides the NRC staff methodology for calculating parameters for limiting conditions of operation required in the radiological effluent Technical Specifications for light-water-cooled nuclear power plants. it provides guidance in using the model specifications reported in NUREG-0472 (Revision 1)*, and NUREG-0473 (Revision 1)*, applicable to operating PWR and BWR licensees, and users of the Standard Technical Specifications packages available for various vendor designs.
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing kf estimates based on reactivity "equivalent" fresh fuel enrichment (REFFE) to kl estimates using the actual spent fuel isotopics.
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
Partnering for Long-term Management of Radioactive Waste-Evolution and Current Practice in Thirteen Countries
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification Requirements Rationale, Revision B
The purpose of this document is to provide the requirements rationale for the current version of the Preliminary Transportation, Aging and Disposal Canister System Performance Specification; WMO-TADCS-000001.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
This report has been prepared to qualitatively assess the amount of burnup credit (reactivity margin) provided by ISG-8 compared to that provided by the burnup credit methodology developed and currently applied in France. For the purposes of this study, the methods proposed in the DOE Topical Report have been applied to the ISG-8 framework since this methodology (or one similar to it) is likely to form the basis of initial cask licensing applications employing limited burnup credit in the United States.
Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS)
Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS)
Slides - 2014 WM Symposia, March 2-6, 2014, Phoenix, AZ
Criticality Safety Assessment for As-loaded Spent Fuel Storage and Transportation Casks
Criticality Safety Assessment for As-loaded Spent Fuel Storage and Transportation Casks
Subcriticality Demonstration Options for Direct Disposal of Dual-purpose Canisters
Subcriticality Demonstration Options for Direct Disposal of Dual-purpose Canisters
CRITICALITY SAFETY ANALYSIS OF AS-LOADED SPENT NUCLEAR FUEL CASKS
CRITICALITY SAFETY ANALYSIS OF AS-LOADED SPENT NUCLEAR FUEL CASKS
UNF-ST&DARDS presentation to WM2015
UNF-ST&DARDS presentation to WM2015
A comprehensive, integrated data and analysis tool—the Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) —is being developed for the US DOE Office of Nuclear Energy (DOE-NE) Nuclear Fuels Storage and Transportation Planning Project (NFST). The overarching goal of UNF-ST&DARDS is to provide a comprehensive controlled source of technical data integrated with key analysis capabilities to characterize inputs to the overall US waste management system from reactor power production through ultimate disposition.
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Radioactive Waste Repositories and Host Regions: Envisaging the Future Together
Used Nuclear Fuel Storage, Transportation, and Disposal Activities
Used Nuclear Fuel Storage, Transportation, and Disposal Activities
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
Emergence of Collective Action and Environmental Networking in Relation to Radioactive Waste Management
This paper explores the relationship between the national environmental movement and nuclear technology in relation to a local emergent group. The historical development of nuclear technology in this country has followed a path leading to continued fear and mistrust of waste management by a portion of the population. At the forefront of opposition to nuclear technology are people and groups endorsing environmental values.
Everything You Ever Wanted to Know about Radioactive Waste Management
Everything You Ever Wanted to Know about Radioactive Waste Management
Explanation of Radioactivity and Radioactive waste
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Austrian National Report
This report provides - a detailed description of the Austrian policy and the usual practices concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section B); - a detailed description of the Austrian legal regime concerning the management of spent fuel of the Austrian research reactors and the management of radioactive waste (see Section E).
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Answers to Questions Posted by the Contracting Parties on the Argentina Second National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Czech Republic National Report, Revision 2.3
. On 25 March 1999 the Government of the Czech Republic approved the Joint Convention which came into effect in the Czech Republic on 18 June 2001. In agreement with the obligations resulting from its accession to the Joint Convention the Czech Republic has already drawn the second National Report for the purposes of Review Meetings of the Contracting Parties, which describes the system of spent fuel and radioactive waste management in the scope required by selected articles of the Joint Convention.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, USA National Report
The United States of America ratified the “Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management” (Joint Convention) on April 9, 2003. The Joint Convention establishes an international peer review process among Contracting Parties and provides incentives for nations to take appropriate steps to bring their nuclear activities into compliance with general safety standards and practices. This first Review Meeting of the Contracting Parties under the Joint Convention is scheduled to take place in November 2003 in Vienna, Austria.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, 2nd Finnish National Report as referred to in Article 32 of the Convention
Finland signed the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management on 2 October 1997 and deposited the tools of acceptance on 10 February 2000. The Convention entered into force on 18 June 2001. The major generators of radioactive waste in Finland are the two nuclear power plants, the Loviisa and Olkiluoto plants. The Loviisa plant has two PWR units, operated by Fortum Power and Heat Oy, and the Olkiluoto plant two BWR units, operated by Teollisuuden Voima Oy.
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
Second Meeting of the Contracting Parties to the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Kingdom of Belgium National Report
On 8 December 1997 Belgium has signed the Joint Convention. The Belgian legislator has expressed its consent with the obligations resulting from the Convention via the Law of 2 August 2002. The ratification was obtained on 5 September 2002. The Convention became effective on 4 December 2002, or 90 days after the Ratification Act had been deposited. Belgium belongs to the group of Contracting Parties having at least one operational nuclear generating unit on their territory.