slides - Generic Issue Management--An Idea Taking Flight
slides - Generic Issue Management--An Idea Taking Flight
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this calculation is to estimate the probability of criticality in a pressurized water reactor (PWR) uncanistered fuel waste package during the postclosure phase of the repository as a function of various waste package material, loading, and environmental parameters. Parameterization on the upper subcritical limit that is used to define the threshold for criticality will also be performed. The possibility of waste package misload due to human or equipment error during preclosure is also considered in estimating the postclosure criticality probability.
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOESNF) canister containing Masachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five Pack defense high level waste (DHLW) waste package to demonstrate concept viability related to use in the Minded Geologic Disposal System (MGDS) environment for the postclosure time frame.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
The purpose of this analysis is to document Waste Package Development Department (WPPD) MCNP evaluations of benchmark solution Laboratory Critical Experiments (LCE's). The objective of this analysis is to quantify the ability of the MCNP 4A (Reference 5.4) code system to accurately calculate the effective neutron multiplication factor (keff) for various measured critical (i.e., keff=1.0) configurations.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department to describe the latest version of the probabilistic criticality analysis methodology and its application to the entire commercial waste stream of commercial pressurized water reactor (PWR) spent nuclear fuel (SNF) expected to be emplaced in the repository. The purpose of this particular application is to evaluate the 21 assembly PWR absorber plate waste package (WP) with respect to degraded mode criticality performance.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
As part of the Mined Geologic Disposal System Waste Package Development design activities, it has been determined that it may be beneficial to add material to fill the otherwise free spaces remaining in waste package after loading high-level nuclear waste. The use of filler material will benefit criticality control in spent nuclear fuel waste packages, by the moderator displacement method.
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
The purpose of this calculation is to determine the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of fuel into the 21 PWR waste package (WP), as provided for in QAP-2-0 Activity Evaluation, Perform Criticality, Thermal, Structural, & Shielding Analyses (Reference 7.1).
There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. Fast Flux Test Facility (FFTF) fuel has been designated as the representative fuel for the mixed-oxide (MOX) fuel group which is a mixture of uranium and plutonium oxides.
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013
Presented at the NEI Used Fuel Management Conference, St. Petersburg, FL, May 7-9, 2013