Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
Disposal of Spent Nuclear Fuel and High-level Radioactive Waste
The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository
This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
Disposal Criticality Analysis for Aluminum-based Fuel in a Codisposal Waste Package - ORR and MIT SNF - Phase II
The objective of this analysis is to characterize the criticality safety aspects of a degraded Department of Energy spent nuclear fuel (DOE-SNF) canister containing Massachusetts Institute of Technology (MIT) or Oak Ridge Research (ORR) fuel in the Five-Pack Defense High-Level Waste (DHLW) waste package to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame.
Guidance on the Selection of PTA Tools: For Stakeholders involved in Radioactive Waste Governance WP1
Guidance on the Selection of PTA Tools: For Stakeholders involved in Radioactive Waste Governance WP1
This research on "e;Guidance on the selection of PTA tools for stakeholders involved in radioactive waste governance"e; was performed under the umbrella of COWAM2-'Work Package 1' (WP1). Through a dialogue on enhancing involvement at a local level, WP1 allows local stakeholders to examine the issues they face in building a democratic local governance process. WP1 also tests how Participatory Technology Assessment (PTA) methods can offer a consensual framework and a platform for deliberative co-decision among scientific and societal actors at the local level.
Tools for Local Stakeholders in Radioactive Waste Governance: Challenges and Benefits of Selected PTA Techniques WP1
Tools for Local Stakeholders in Radioactive Waste Governance: Challenges and Benefits of Selected PTA Techniques WP1
The investigation consists of three parts and shall provide an input to the – empirical – PTA-2 study to be undertaken by SCK•CEN (called “lens”):<br>A. Compilation of – selected – existing PTA methods and procedures identifying requisites, practices, benefits, and challenges to answer the key questions in the context of WP1 about a PTA “toolbox”: “What can you apply, when can you apply, and what is needed to apply?” The multi-dimensional context of a possible “PTA situation” is analysed; suitable and nonsuitable methods, techniques and procedures are discussed.<br>B.
Nuclear waste management from a local perspective: Reflections for a Better Governance Final Report
Nuclear waste management from a local perspective: Reflections for a Better Governance Final Report
During the 1990s, nuclear waste programmes in nearly every concerned country met many difficulties. Nuclear waste management was seen as a technical issue, and the local communities were only involved in the last stage of the decision-making process when almost all components of the decision were already fixed. The management of high level radioactive waste is now recognised as a complex decision-making process entailing technical, ethical, social, political and economic dimensions where no solution can be reached solely on the basis of technical considerations.
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
Technical Basis Report For Surface Characteristics, Preclosure Hydrology, And Erosion
This study presents a synthesis of information and interpretations relevant to surficial processes at the Yucca Mountain Site. The report is part of the technical basis which will be used to evaluate the suitability of Yucca Mountain, Nevada, as a site for a mined geologic repository for the permanent disposal of high-level radioactive waste and spent nuclear fuel. It provides a description of the surface characteristics, preclosure hydrology, and erosion at the Yucca Mountain Site. This report will provide the technical basis to evaluate three technical guidelines from the U.S.