Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Preclosure Criticality Analysis Process Report
Preclosure Criticality Analysis Process Report
The preclosure criticality analysis process described in this technical report provides a systematic approach for determining the need for criticality controls and for evaluating their effectiveness during the preclosure period of the Monitored Geologic Repository at Yucca Mountain, Nevada.
Nuclear Criticality Calculations for the Wet Handling Facility
Nuclear Criticality Calculations for the Wet Handling Facility
The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF
The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters.
Geochemistry Model Validation Report: Material Degradation and Release Model
Geochemistry Model Validation Report: Material Degradation and Release Model
The purpose of the material degradation and release (MDR) model is to predict the fate of the waste package materials, specifically the retention or mobilization of the radionuclides and the neutron-absorbing material as a function of time after the breach of a waste package during the 10,000 years after repository closure. The output of this model is used directly to assess the potential for a criticality event inside the waste package due to the retention of the radionuclides combined with a loss of the neutron-absorbing material.
Preclosure Criticality Safety Analysis
Preclosure Criticality Safety Analysis
The means to prevent and control criticality must be addressed as part of the Preclosure Safety Analysis (PCSA) required for compliance with 10 CFR Part 63 [DIRS 180319], where the preclosure period covers the time prior to permanent closure activities. This technical report presents the nuclear criticality safety evaluation that documents the achievement of this objective.
Operational Waste Stream Assumption for TSLCC Estimates
Operational Waste Stream Assumption for TSLCC Estimates
This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
General Corrosion and Localized Corrosion of Waste Package Outer Barrier
The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating long-term waste package performance in the total system performance assessment (TSPA). The waste package design for the license application is a double-wall waste package placed underneath a protective drip shield (SNL 2007 [DIRS 179394]; SNL 2007 [DIRS 179354]). The WPOB will be constructed of Alloy 22 (UNS N06022) (SNL 2007 [DIRS 179567], Section 4.1.1.6), a highly corrosion-resistant nickel-based alloy.
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress Corrosion Cracking of Waste Package Outer Barrier and Drip Shield Materials
Stress corrosion cracking (SCC) is one of the most common corrosion-related causes for premature breach of metal structural components. SCC is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously (Jones 1992 [DIRS 169906], Section 8.1): metallurgical susceptibility, critical environment, and sustained tensile stresses.
In-Package Chemistry Abstraction
In-Package Chemistry Abstraction
This report was developed in accordance with the requirements in Technical Work Plan for Postclosure Waste Form Modeling (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA).
Dry Transfer Facility Criticality Safety Calculations
Dry Transfer Facility Criticality Safety Calculations
This design calculation updates the previous criticality evaluation for the fuel handling, transfer, and staging operations to be performed in the Dry Transfer Facility (DTF) including the remediation area. The purpose of the calculation is to demonstrate that operations performed in the DTF and RF meet the nuclear criticality safety design criteria specified in the Project Design Criteria (PDC) Document (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in Project Requirements Document (Canori and Leitner 2003 [DIRS 166275], p.
Analysis of Dust Deliquescence for FEP Screening
Analysis of Dust Deliquescence for FEP Screening
The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).
General Corrosion and Localized Corrosion of the Drip Shield
General Corrosion and Localized Corrosion of the Drip Shield
The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall.
The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared ·according to Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 171583]).
Analysis of Mechanisms for Early Waste Package / Drip Shield Failure
Analysis of Mechanisms for Early Waste Package / Drip Shield Failure
The purpose of this analysis is to evaluate the types of defects or imperfections that could occur in a waste package or a drip shield and potentially lead to its early failure, and to estimate a probability of undetected occurrence for each type. An early failure is defined as the through-wall penetration of a waste package or drip shield due to manufacturing or handling-induced defects, at a time earlier than would be predicted by mechanistic degradation models for a defect-free waste package or drip shield.
Hydrogen-Induced Cracking of the Drip Shield
Hydrogen-Induced Cracking of the Drip Shield
Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction.
Analysis of Dust Deliquescence for FEP Screening
Analysis of Dust Deliquescence for FEP Screening
The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).