Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of the Commonwealth of Australia
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report of the Commonwealth of Australia
This is the fourth National Report by Australia.1 The 2008 National Report and Australia’s presentation to the Third Review Meeting in 2009 highlighted the following major issues:
• progress on national uniformity;
• progress with development of a national waste classification scheme;
• radioactive waste management policy – achievements, consultation, strategy;
• spent fuel management and management of reprocessing waste;
• decommissioning;
• uranium mining waste management; and
• recruitment and skills management.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report from the Commonwealth of Australia, October 2008
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report from the Commonwealth of Australia, October 2008
This is the third National Report by Australia1. The 2005 National Report and Australia’s presentation to the Second Review Meeting in 2006 highlighted issues as to how each of the nine Australian jurisdictions within Australia’s federal system are complying with the Joint Convention. A challenge identified for Australia in the Rapporteur’s Report for Country Group 3 was “ensuring a coherent approach to regulations and waste management practice in view of the complex nature of national and regional legislation”.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Australian National Report, October 2005
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Australian National Report, October 2005
The responsibility for the governance of Australia is shared by the Australian government and the governments of the six states and two self governing territories. Responsibility for radiation health and safety in each State and Territory rests with the respective State/Territory government, unless the activity is carried out by an Australian government agency or a contractor to a Australian government agency; in those cases the activity is regulated by the Australian government.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Australian National Report, July 2003
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Australian National Report, July 2003
The responsibility for the governance of Australia is shared by Australia's federal government (also known as the Commonwealth government) and the governments of the six states and two self governing territories. Responsibility for radiation health and safety in each State and Territory rests with the respective State/Territory government, unless the activity is carried out by a Commonwealth agency or a contractor to a Commonwealth agency; in those cases the activity is regulated by the Federal government (Commonwealth government of Australia).
Joint Convention Responses to Questions Posted to Australia in 2009
Joint Convention Responses to Questions Posted to Australia in 2009
Joint Convention Responses to Questions Posted to Australia in 2009