Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister
The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR.
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister
This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods
Slides - WM2014 Symposia, March 2-6, 2014, Phoenix, AZ
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase ll Degraded Codisposal Canister Internal Criticality
This report presents the analysis and conclusions with respect to disposal criticality for canisters containing aluminum-based fuels from research reactors. The analysis has been divided into three phases. Phase I, dealt with breached and flooded waste packages containing relatively intact canisters and intact internal (basket) structures; Phase II, the subject of this report, covers the degradation of the spent nuclear fuel (SNF) and structures internal to the codisposal waste package including high level waste (HLW), canisters, and criticality control material.
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package
The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (Sis) in the outer corrosion barrier (dCB).
UFD Storage and Transportation - Transportation Working Group Report
UFD Storage and Transportation - Transportation Working Group Report
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011).
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
NUREG-1768 United States Nuclear Regulatory Commisssion Package Performance Study Test Protocals
This test protocols report presents the NRC staff’s preliminary plans for an experimental phase of the Package Performance Study (PPS), which is examining the response of transportation casks to extreme transportation accident conditions. The staff proposes to conduct tests of full-scale rail and full-scale truck casks including a high-speed impact with an unyielding surface followed by an extreme fire test. The NRC has a contract in place with Sandia National Laboratories (SNL) to conduct the impact and fire tests and to carry out a series of analyses to support the test program.
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
Gap Analysis to Support Extended Storage of Used Nuclear Fuel
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT'">This report fulfills the M1 milestone M11UF041401, “Storage R&D Opportunities Report” under Work Package Number FTPN11UF0414. </span></p>
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions, April 2009
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions, April 2009
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions, April 2009
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Third Report, October 2008
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Third Report, October 2008
This report demonstrates how Canada continues to meet its obligations under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. A collaboration by government, industry and the regulatory body, this document focuses specifically on the progress of long-term management initiatives for spent fuel and radioactive waste in Canada, revisions and updates to Canada’s Second National Report and comments and issues raised at the Second Review Meeting.
Regulatory Guide - Geological Considerations in Siting a Repository for Underground Disposal of High-level Radioactive Waste
Regulatory Guide - Geological Considerations in Siting a Repository for Underground Disposal of High-level Radioactive Waste
At the present time in Canada, high-level radioactive waste is accumulating in the form of irradiated, used fuel from research reactors and nuclear power generating stations. The used fuel bundles are kept in water-filled bays at each of the reactor sites. Because water is both a radiation barrier and an effective coolant, this system provides a safe means of storage. Used fuel is also safely stored above ground in dry concrete canisters in several Canadian locations.
Radioactive Waste Management and Decommissioning in Canada
Radioactive Waste Management and Decommissioning in Canada
OECD/NEA: Canada
OECD/NEA: Canada
Discussion Document# 1: Asking the Right Questions?
Discussion Document# 1: Asking the Right Questions?
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canadian National Report -- Final Report
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canadian National Report -- Final Report
This report demonstrates how Canada continues to meet its obligations under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. A collaboration by government, industry and the regulatory body, this document focuses specifically on the progress of long-term management initiatives for spent fuel and radioactive waste in Canada, revisions and updates to Canada’s Third National Report and comments and issues raised at the Third Review Meeting.
Discussion Document# 2: Understanding the Choices
Discussion Document# 2: Understanding the Choices
Canadian Site Visit and Workshop - Summary and International Perspective
Canadian Site Visit and Workshop - Summary and International Perspective
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Northern Village of Pinehouse, Saskatchewan
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - Northern Village of Pinehouse, Saskatchewan
On August 17, 2010, the Northern Village of Pinehouse, Saskatchewan and the Kineepik Métis Local expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of the Pinehouse area against five screening criteria using readily available information.
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT CANADA'S RESPONSES TO QUESTIONS
JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND ON THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT CANADA'S RESPONSES TO QUESTIONS
Response to Questions Posted To Canada in 2006
Fourth Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions to its Fourth National Report
Fourth Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions to its Fourth National Report
Fourth Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Canada's Responses to Questions to its Fourth National Report
Moving Forward Together: Canada’s Plan for the Long-Term Management of Used Nuclear Fuel
Moving Forward Together: Canada’s Plan for the Long-Term Management of Used Nuclear Fuel
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management -- Second Report
Canadian National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management -- Second Report
This is Canada's Second National Report and it demonstrates how Canada continues to meet its obligations under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The main aspect addressed in this report is the progress on initiatives for the long-term management of spent fuel and radioactive waste in Canada. This report also includes information on Canada's systematic monitoring programs and their implementation and addresses specific topics raised at the First Review Meeting.
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - English River First Nation, Saskatchewan
INITIAL SCREENING FOR SITING A DEEP GEOLOGICAL REPOSITORY FOR CANADA'S USED NUCLEAR FUEL - English River First Nation, Saskatchewan
On September 13, 2010, the English River First Nation expressed interest in learning more about the Nuclear Waste Management Organization (NWMO) site selection process to find an informed and willing community to host a deep geological repository for Canada’s used nuclear fuel (NWMO, 2010). This report summarizes the findings of an initial screening, conducted by Golder Associates Ltd., to evaluate the potential suitability of thirteen English River First Nation reserve areas against five screening criteria using readily available information.