Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, ISG-8 - Limited Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office Interim Staff Guidance - 8
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 1
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
A Critical Review of the Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage
This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing kf estimates based on reactivity "equivalent" fresh fuel enrichment (REFFE) to kl estimates using the actual spent fuel isotopics.
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks
Spent Fuel Project Office, Interim Staff Guidance - 8, Revision 2 - Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport
and Storage Casks
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
Limited Burnup Credit in Criticality Safety Analysis: A Comparison of ISG-8 and Current International Practice
This report has been prepared to qualitatively assess the amount of burnup credit (reactivity margin) provided by ISG-8 compared to that provided by the burnup credit methodology developed and currently applied in France. For the purposes of this study, the methods proposed in the DOE Topical Report have been applied to the ISG-8 framework since this methodology (or one similar to it) is likely to form the basis of initial cask licensing applications employing limited burnup credit in the United States.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, November 2008
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, November 2008
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Ireland National Report, May 2003
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, Ireland National Report, May 2003
There are no nuclear power stations and no nuclear fuel cycle activities in Ireland. There are 2.5 tonnes of natural uranium in storage on the campus of a university, which was previously incorporated in a sub-critical assembly. This material is stored in the building in which it was previously used. Other than in relation to these uranium sources, the application of the Convention is limited to radioactive waste arising from the medical, industrial and research applications of radioisotopes.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, October 2005
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, October 2005
This Report gives an outline of Ireland’s national policy, State institutional framework and general legislation governing all aspects of the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in Ireland. It also sets out measures adopted to implement the relevant obligations of the Convention noting that Ireland does not have any spent nuclear fuel to deal with.
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, October 2011
Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, National Report by Ireland, October 2011
Ireland became a member of the International Atomic Energy Agency in 1970. In March, 2000, Ireland was the 25th State to ratify the IAEA Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, thus bringing the Convention into force.