Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the “end-effect”. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package.
BWR Axial Profile
BWR Axial Profile
The purpose of this calculation is to develop axial profiles for estimating the axial variation in burnup of a boiling water reactor (BWR) assembly spent nuclear fuel (SNF) given the average burnup of an assembly. A discharged fuel assembly typically exhibits higher burnup in the center and lower burnup at the ends of the assembly. Criticality safety analyses taking credit for SNF burnup must account for axially varying burnup relative to calculations based on uniformly distributed assembly average burnup due to the under-burned tips.
PWR Axial Burnup Profile Analysis
PWR Axial Burnup Profile Analysis
The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to
PWR Axial Profile Evaluation
PWR Axial Profile Evaluation
This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
Research to Support Expansion of U.S. Regulatory Position on Burnup Credit for Transport and Storage Casks
In 1999, the United States Nuclear Regulatory Commission (U.S. NRC) initiated a research program
to support the development of technical bases and guidance that would facilitate the implementation of burnup
credit into licensing activities for transport and dry cask storage. This paper reviews the following major areas of
investigation: (1) specification of axial burnup profiles, (2) assumption on cooling time, (3) allowance for
assemblies with fixed and removable neutron absorbers, (4) the need for a burnup margin for fuel with initial
Final Disposal of Spent Nuclear Fuel in Finnish Bedrock - Olkiluoto Site Report
Final Disposal of Spent Nuclear Fuel in Finnish Bedrock - Olkiluoto Site Report
Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Hastholmen in Loviisa, Kivetty in Aanekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto.
Interim Summary Report of the Safety Case
Interim Summary Report of the Safety Case
The report outlines the current design and safety concept for the planned repository. It summarises the approach used to formulate scenarios for the evolution of the disposal system over time, describes these scenarios and presents the main models and computer codes used to analyse them. It also discusses compliance with Finnish regulatory requirements for long-term safety of a geological repository and gives the main evidence, arguments and analyses that lead to confidence, on the part of Posiva, in the long-term safety of the planned repository
Final Disposal of Spent Nuclear Fuel in Olkiluoto
Final Disposal of Spent Nuclear Fuel in Olkiluoto
Olkiluoto Site Description
Olkiluoto Site Description
This second version of the Olkiluoto Site Report, produced by the OMTF (Olkiluoto Modelling Task Force), updates the Olkiluoto Site Report 2004 (Posiva 2005) with the data and knowledge obtained up to December 2005.<br/>The main product of the modelling has been to develop a descriptive model of the site (the Site Descriptive Model), i.e. a model describing the geometry, properties of the bedrock and the water and the associated interacting processes and mechanisms.