Category of Content
Siting Experience Documents Only
Publication Date
Keywords
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology
The "Summary Report of SNF Isotopic Comparisons for the Disposal Criticality Analysis Methodology" contains a summary of the analyses that compare SNF measured isotopic concentrations (radiochemical assays) to calculated SNF isotop~c concentrations (SAS2H module ·orScale4.3). The results of these analyses are used to support the validation of the isotopic models for spent commercial light water reactor (LWR) fuel.
Dry Storage of Used Fuel Transition to Transport
Dry Storage of Used Fuel Transition to Transport
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Spent Nuclear Fuel Discharges from U.S. Reactors 1994
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel
As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of the storage pool in independent spent fuel storage installations (ISFSIs).
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water REactor Critical Configurations: Volume 5 - North Anna Unit 1 Cycle 5
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
(AFR) criticality safety analyses be validated against experimental measurements. If credit for the
negative reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark AFR criticality analysis methods using selected critical
configurations from commercial pressurized-water reactors (PWR).
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
Safety and Security of Commercial Spent Nuclear Fuel Storage: Public Report - Summary
At the request of the U.S. Congress, the National Academies assessed the safety and
security of spent nuclear fuel stored in pools and dry casks at commercial nuclear power
plants in the United States. The public report can be viewed on the National Academies
Press website at http://books.nap.edu/catalog/11263.html.
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 2-Sequoyah Unit 2 Cycle 3
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit for the negative
reactivity of the depleted (or spent) fuel isotopics is desired, it is necessary to benchmark
computational methods against spent fuel critical configurations. This report summarizes a portion
of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical
configurations from commercial pressurized-water reactors.
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Validation of SCALE (SAS2H) Isotopic Predictions for BWR Spent Fuel
Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been
modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system.
The SAS2H sequence uses transport methods combined with the depletion and decay capabilities
of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup
history. Results of these calculations are compared with chemical assay measurements of spent fuel
inventories for each sample. Results show reasonable agreement between measured and predicted
Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transporation of Used Fuel Rev. 1
Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transporation of Used Fuel Rev. 1
Because there is currently no designated disposal site for used nuclear fuel in the United States, the nation faces the prospect of extended long‐term storage (i.e., >60 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S.
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
An Extension of the Validation of SCALE (SAS2H) Isotopic Predictions of PWR Spent Fuel
Isotopic characterization of spent fuel via depletion and decay calculations is necessary for
determination of source terms for subsequent system analyses involving heat transfer, radiation
shielding, isotopic migration, etc. Unlike fresh fuel assumptions typically employed in the criticality
safety analysis of spent fuel configurations, burnup credit applications also rely on depletion and
decay calculations to predict the isotopic composition of spent fuel. These isotopics are used in
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations
Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor
have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code
system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the
Waste Package Design team at the Yucca Mountain Project in the United States, who performed
the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical
measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5
The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original "fresh" composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--ARIANE and REBUS Programs (UO2 Fuel)
This report is part of a report series designed to document benchmark-quality radiochemical assay data
against which computer code predictions of isotopic composition for spent nuclear fuel can be validated
to establish the uncertainty and bias associated with the code predictions. The experimental data analyzed
in the present report were acquired from two international programs: (1) ARIANE and (2) REBUS, both
coordinated by Belgonucleaire. All measurements include extensive actinide and fission product data of
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
SCALE-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 1-Summary
The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor
criticality safety analyses be validated against experimental measurements. If credit is to be taken for
the reduced reactivity of burned or spent fuel relative to its original $fresh# composition, it is
necessary to benchmark computational methods used in determining such reactivity worth against
spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to
Key Issues Associated with Interim Storage of Used Nuclear Fuel
Key Issues Associated with Interim Storage of Used Nuclear Fuel
The issue of interim storage of used (spent)1 fuel is dependent on a number of key factors, some
of which are not known at this time but are the subject of this study. The first is whether or not
the Yucca Mountain Project continues or is cancelled such that it may be able to receive spent
fuel from existing and decommissioned nuclear power stations. The second is whether the United
States will pursue a policy of reprocessing and recycling nuclear fuel. The reprocessing and
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
Validation of the SCALE System for PWR Spent Fuel Isotopic Composition Analyses
The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic
composition by the SCALE system depletion analysis was assessed using data presented in the report.
Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were
compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2,
and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of
predicted and measured concentrations for 14 actinides and 37 fission and activation products.
Dry Storage of Used Fuel Transition to Transport FCRD-UFD-2012-000253
Dry Storage of Used Fuel Transition to Transport FCRD-UFD-2012-000253
This report provides details of dry storage cask systems and contents in U.S. for commercial light water
reactor fuel. Section 2 contains details on the canisters used to store approximately 86% of assemblies in
dry storage in the U.S. Transport cask details for bare fuels, dual purpose casks and canister transport
casks are included in Section 3. Section 4 details the inventory of those shutdown sites without any
operating reactors. Information includes the cask type deployed, transport license and status as well as
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
Spent Nuclear Fuel: Accumulating Quantities at Commercial Reactors Present Storage and Other Challenges
The amount of spent fuel stored on-site at commercial nuclear reactors will continue to accumulate—increasing by about 2,000 metric tons per year and likely more than doubling to about 140,000 metric tons—before it can be moved off-site, because storage or disposal facilities may take decades to develop. In examining centralized storage or permanent disposal options, GAO found that new facilities may take from 15 to 40 years before they are ready to begin accepting spent fuel. Once an off-site facility is available, it will take several more decades to ship spent fuel to that facility.
Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel – Executive Summary
Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel – Executive Summary
The U.S. Nuclear Waste Technical Review Board (Board) is tasked by the amendments to the Nuclear Waste Policy Act of 1982 to independently evaluate U. S. Department of Energy (DOE) technical activities for managing and disposing of used nuclear fuel and high-level radioactive waste. This report was prepared to inform DOE and Congress about the current state of the technical basis for extended dry storage1 of used fuel and its transportation following storage.