Category of Content
Siting Experience Documents Only
Publication Date
Country
Keywords
UNF-STANDARDS presentation to EPRI extended storage collaboration project
UNF-STANDARDS presentation to EPRI extended storage collaboration project
Understanding the changing nuclear and mechanical characteristics of used nuclear fuel (UNF) over time and how these changing characteristics affect storage, transportation, and disposal options can require many tools and types of data. To streamline analysis capabilities for the waste management system, a comprehensive, integrated data and analysis tool has been assembled—UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS).
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation
Pressurized water reactor (PWR) burnup credit validation is
demonstrated using the benchmarks for quantifying fuel reactivity
decrements, published as Benchmarks for Quantifying Fuel Reactivity
Depletion Uncertainty, Electric Power Research Institute (EPRI)
report 1022909. This demonstration uses the depletion module
TRITON (Transport Rigor Implemented with Time-Dependent
Operation for Neutronic Depletion) available in the SCALE 6.1
(Standardized Computer Analyses for Licensing Evaluations) code
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified.
Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program
Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program
The Electric Power Research Institute (EPRI) convened a workshop of over 40 representatives of the nuclear industry, federal government, national laboratories, and suppliers of used-fuel dry-storage systems to discuss the potential issues associated with extended dry storage of used fuel, that is, storage considerably beyond the term of current and recently proposed U.S. Nuclear Regulatory Commission (NRC) regulations. The workshop was held November 18-19, 2009, at EPRI's offices in Washington, DC.
HTC Experimental Program: Validation and Calculational Analysis
HTC Experimental Program: Validation and Calculational Analysis
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data
In the 1980s, a series of critical experiments referred to as the Haut Taux de Combustion (HTC)
experiments was conducted by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at the
experimental criticality facility in Valduc, France. The plutonium-to- uranium ratio and the isotopic
compositions of both the uranium and plutonium used in the simulated fuel rods were designed to be
similar to what would be found in a typical pressurized-water reactor fuel assembly that initially had an
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
The purpose of this study is to provide insights into the neutronic similarities that may exist between a
generic cask containing typical spent nuclear fuel assemblies and commercial reactor critical (CRC) state-
points. Forty CRC state-points from five pressurized-water reactors were selected for the study and the
type of CRC state-points that may be applicable for validation of burnup credit criticality safety
calculations for spent fuel transport/storage/disposal systems are identified. The study employed cross-
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions
Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)
Yankee Atomic Electric Company vs The United States, November 14, 2013
Yankee Atomic Electric Company vs The United States, November 14, 2013
Spent Nuclear Fuel Litigation - Court of Federal Claims decision in Maine Yankee II, Conn Yankee II and Yankee Atomic II
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
THERMAL PERFORMANCE SENSITIVITY STUDIES IN SUPPORT OF MATERIAL MODELING FOR EXTENDED STORAGE OF USED NUCLEAR FUEL
The work reported here is an investigation of the sensitivity of component temperatures in a specific storage system, including fuel cladding temperatures, in response to modeling assumptions that differ from design-basis, including age-related changes that could degrade the thermal behavior of the system. Preliminary evaluations of representative horizontal and vertical storage systems at design basis conditions provides general insight into the expected behavior of storage systems over extended periods of time.
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty
Analytical methods, described in this report, are used to
systematically determine experimental fuel sub-batch
reactivities as a function of burnup. Fuel sub-batch reactivities
are inferred using more than 600 in-core pressurized water
reactor (PWR) flux maps taken during 44 cycles of operation
at the Catawba and McGuire nuclear power plants. The
analytical methods systematically search for fuel sub-batch
reactivities that minimize differences between measured and
computed reaction rates, using Studsvik Scandpower’s
Other Countries Provide Lessons for US in Managing Used Nuclear Fuel
Other Countries Provide Lessons for US in Managing Used Nuclear Fuel
News item from NEI summarizing siting process for nuclear waste repositories in Sweden, Finland and France.
Nuclear Waste Management in Finland
Nuclear Waste Management in Finland
A summary of nuclear waste management in Finland, including energy use statistics, principles of nuclear waste management, financing, how waste is disposed of, the underground research laboratory, and the authorities involved in nuclear waste management.
Radioactive Waste Management Programmes in OECD/NEA Member Countries: Germany
Radioactive Waste Management Programmes in OECD/NEA Member Countries: Germany
A summary of the radioactive waste management program in Germany as of 2013, including the national nuclear energy context; sources, types, and quantities of waste; radioactive waste management policies and programs; research and development; decommissioning and dismantling policies and projects; transport; competent authorities; financing; and public information.