Category of Content
Siting Experience Documents Only
Publication Date
Subject Matter
Keywords
The DOE Position on the MRS Facility
The DOE Position on the MRS Facility
REPORT TO THE SECRETARY OF ENERGY ON THE CONCLUSIONS AND RECOMMENDATIONS OF THE ADVISORY PANEL ON ALTERNATIVE MEANS OF FINANCING AND MANAGING (AMFM) RADIOACTIVE WASTE MANAGEMENT FACILITIES
REPORT TO THE SECRETARY OF ENERGY ON THE CONCLUSIONS AND RECOMMENDATIONS OF THE ADVISORY PANEL ON ALTERNATIVE MEANS OF FINANCING AND MANAGING (AMFM) RADIOACTIVE WASTE MANAGEMENT FACILITIES
The AMFM Panel has submitted its report "Managing Nuclear
Waste - A Better Idea" to the Secretary. The report contains six
general conclusions and one general recommendation in Chapter
XII. In addition, Chapter X contains 14 specific enhancements
("Key Components of Any Waste Management Structure") that are
recommended for implementation by the Office of Civilian Radioactive
Waste Management (OCRWM) or any alternative organization.
This paper lists and discusses the 6 general conclusions, the
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Burn-up Credit Criticality Safety Benchmark - Phase VII, UO2 Fuel: Study of Spent Fuel Compositions for Long-term Disposal
Managing Nuclear Waste - A Better Idea
Managing Nuclear Waste - A Better Idea
All activities which involve the use of radioactive material inevitably result in nuclear waste as a by-product of their operation. Most of the waste produced by such activities as medical diagnosis and therapy, field and laboratory research, and industrial processes is low-level radioactive waste—primarily small amounts of radioactivity in a large volume of matter.
Disposal Subcommittee Report to the Full Commission DRAFT
Disposal Subcommittee Report to the Full Commission DRAFT
The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future has
commenced to address a set of issues, all of which bear directly on the central question: “How can the
United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner
and within a timeframe that is technically, socially, economically, and politically acceptable?”
To answer this question and to develop specific recommendations and options for consideration by the
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation--Calvert Cliffs, Takahama, and Three Mile Island Reactors
This report is part of a report series designed to document benchmark-quality radiochemical isotopic
assay data against which computer code accuracy can be quantified to establish the uncertainty and bias
associated with the code predictions. The experimental data included in the report series were acquired
from domestic and international programs and include spent fuel samples that cover a large burnup range.
The measurements analyzed in the current report, for which experimental data is publicly available,
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal
The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and
A Technology Roadmap for Generation IV Nuclear Energy Systems
A Technology Roadmap for Generation IV Nuclear Energy Systems
To advance nuclear energy to meet future energy needs, ten countries—Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States—have agreed on a framework for international cooperation in research for a future generation of nuclear energy systems, known as Generation IV. The figure below gives an overview of the generations of nuclear energy systems. The first generation was advanced in the 1950s and 60s in the early prototype reactors.
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term Disposal Criticality Safety
Utilization of burnup credit in criticality safety analysis for long-term disposal of spent
nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile
material that will be present in the repository. Burnup-credit calculations are based on depletion
calculations that provide a conservative estimate of spent fuel contents (in terms of criticality
potential), followed by criticality calculations to assess the value of the effective neutron
National Transportation Plan
National Transportation Plan
This Plan outlines the Department of Energy’s (DOE) current strategy and planning for
developing and implementing the transportation system required to transport spent nuclear fuel
(SNF) and high-level radioactive waste (HLW) from where the material is generated or stored to
the proposed repository at Yucca Mountain, Nevada. The Plan describes how DOE’s Office of
Civilian Radioactive Waste Management (OCRWM) intends to develop and implement a safe,
secure and efficient transportation system and how stakeholder collaboration will contribute to
San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses
San Onofre PWR Data for Code Validation of MOX Fuel Depletion Analyses
The isotopic composition of mixed-oxide fuel (fabricated with both uranium and plutonium
isotopes) discharged from reactors is of interest to the Fissile Material Disposition Program. The
validation of depletion codes used to predict isotopic compositions of MOX fuel, similar to studies
concerning uranium-only fueled reactors, thus, is very important. The EEI-Westinghouse Plutonium
Recycle Demonstration Program was conducted to examine the use of MOX fuel in the San Onofre
Acceptance Priority Ranking & Annual Capacity Report
Acceptance Priority Ranking & Annual Capacity Report
The Nuclear Waste Policy Act of 1982, as amended (the Act), assigns the Federal Government the responsibility for the disposal of spent nuclear fuel and high-level waste. Section 302a of the Act authorized the Secretary to enter into contracts with the owners and generators of commercial spent nuclear fuel and or high level waste. The Standard Contract for Disposal of Spent Nuclear Fuel and or High Level Radioactive Waste (Standard Contract) established the contractual mechanism for the Department's acceptance and disposal of spent nuclear fuel and high level waste.
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs
This report presents studies to assess reactivity margins and loading curves for pressurized water reactor
(PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-
assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to
demonstrate the impact on the predicted effective neutron multiplication factor, keff, and burnup-credit
loading curves. The purpose of this report is to provide a greater understanding of the importance of
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Assessment of Fission Product Cross-Section Data for Burnup Credit Applications
Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance.
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel
The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure
Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform
postclosure criticality calculations. The validation process applies the criticality analysis methodology
approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report.1
The application systems for this validation consist of waste packages containing transport, aging, and
Identification, Description, and Characterization of Existing and Alternative Nuclear Energy Systems
Identification, Description, and Characterization of Existing and Alternative Nuclear Energy Systems
Fundamentally, a nuclear energy system uses nuclear fission to create heat, which is then available for generating electricity or other applications, including seawater desalination, heating, and production of other fuels. The nuclear energy system as currently deployed in the United States, Figure 1, consists of a number of integrated components, beginning with the natural resources required for nuclear fuel, followed by fissioning of the fuel in reactors connected to electricity generation facilities, and ending with the disposition of all wastes, including used nuclear fuel (UNF).
AN ANALYSIS OF INJURIES AT DEPARTMENT OF ENERGY WORK SITES
AN ANALYSIS OF INJURIES AT DEPARTMENT OF ENERGY WORK SITES
The Construction Industry Research and Policy Center (CIRPC) at the University of Tennessee was awarded a contract by the Center to Protect Workers’ Rights, under their grant program with the National Institute of Occupational Safety and Health (NIOSH), to analyze injuries of employees of the U. S. Department of Energy (DOE) and their contractors’ working at DOE work sites. The injury data analyzed were injuries recorded in DOE’s Computerized Accident Incident Reporting System (CAIRS).
Preliminary Transportation, Aging and Disposal Canister System Performance Specification, Revision B
Preliminary Transportation, Aging and Disposal Canister System Performance Specification, Revision B
This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section
1.2.
Proposed Alternative Strategy for the Department of Energy's Civilian Radioactive Waste Management Program: A Task Force Report
Proposed Alternative Strategy for the Department of Energy's Civilian Radioactive Waste Management Program: A Task Force Report
Over the decade since NWPA, the disposal
program's strategy, based on its interpretation of the
legislative mandate and regulatory requirements, has
sought:
• in a single large step and under a tight
schedule, to achieve the first-of-a-kind licensing
of a first-of-a-kind repository for isolating
wastes from the human environment for many
thousands of years.
• in a single large step and as rapidly as possible,
to build a full-scale repository and begin
disposing of the bulk of the nation's inventory
Total System Model Version 6.0 Preprocessor Work Order Algorithm Validation Report
Total System Model Version 6.0 Preprocessor Work Order Algorithm Validation Report
The purpose of this validation is to compare TSM simulation results using the manually calculated work orders (WO) for the transportation cask fleet to simulation results using an automated WO algorithm developed to estimate the cask fleet.
Civilian Nuclear Spent Fuel Temporary Storage Options
Civilian Nuclear Spent Fuel Temporary Storage Options
The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a
permanent underground repository for highly radioactive spent fuel from nuclear reactors,
but delays have pushed back the facility’s opening date to 2010 at the earliest. In the
meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000
metric tons per year. Major options for managing those growing quantities of nuclear spent
fuel include continued storage at reactors, construction of a DOE interim storage site near
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS: A Prototypic SCALE Control Module for Automated Criticality Safety Analyses Using Burnup Credit
STARBUCS is a new prototypic analysis sequence for performing automated criticality safety analyses of spent fuel systems employing burnup credit. A depletion analysis calculation for each of the burnup-dependent regions of a spent fuel assembly, or other system containing spent fuel, is performed using the ORIGEN-ARP sequence of SCALE. The spent fuel compositions are then used to generate resonance self-shielded cross sections for each region of the problem, which are applied in a three-dimensional criticality safety calculation using the KENO V.a code.
Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned
Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned
Presented at WM'03 Conference, Tucson, AZ, February 23-27, 2003
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel
This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance.