EQ6 Calculations for Chemical Degradation of Fast Flux Test Facility (FFTF) Waste Packages
Fuel from the Fast Flux Test Facility ' (FFTF) has been considered for disposal at the proposed
Fuel from the Fast Flux Test Facility ' (FFTF) has been considered for disposal at the proposed
The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.
The Monitored Geologic Repository (MGR) Waste Package Project of the BSC Management and Operating Contractor for the Department of Energy's Office of Civilian Radioactive Waste Management performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Enrico Fermi Reactor owned by the DOE (Ref. 9). The Fermi SNF has been considered for disposal at the proposed Yucca Mountain site.
The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Training, Research, Isotopes, General Atomics (TRIGA) reactor (Ref. 1). The TRIGA SNF has been considered for disposal at the potential Yucca Mountain site.
The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site.
The purpose of this engineering calculation is to provide the chemical composition for the Department of Energy (DOE) Savannah River Site (SRS) High-Level Waste (HLW) glass. Since the glass is to be co-disposed with other DOE spent nuclear fuels (SNFs) in the Monitored Geologic Repository (MGR), its chemical composition is needed for the design of the co-disposal canisters and waste packages in term of criticality and degradation.
This report was developed in accordance with the requirements in Technical Work Plan for Postclosure Waste Form Modeling (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA).
As part of the Mined Geologic Disposal System Waste Package Development design activities, it has been determined that it may be beneficial to add material to fill the otherwise free spaces remaining in waste package after loading high-level nuclear waste. The use of filler material will benefit criticality control in spent nuclear fuel waste packages, by the moderator displacement method.
The Monitored Geologic Repository (MGR) Waste Package Operations (WPO) of the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of Pu-ceramic waste forms. The Pu- ceramic (Refs. 1 and 2) is designed to immobilize excess plutonium from weapons production, and has been considered for disposal at the potential Yucca Mountain site.
The purpose of this calculation is to perform degraded mode criticality evaluations of Plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for Plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilzed Plutonium) in each.