Skip to main content

Overview of Vacuum Drying Methods and Factors Affecting the Quantity of Residual Water – Public Version

NRC initiated a research activity with the Center for Nuclear Waste Regulatory Analyses (CNWRA®) to develop a conceptual test plan for measuring the quantity of residual water remaining in a canister following vacuum drying to the criterion referenced in NUREG–1536. While residual water may be considered as unbound or bound (i.e., physi- or chemisorbed), the focus of this test plan is only the unbound water. This activity consists of the preparation of two technical letter reports. The first is the present report, which describes current industry drying practices and capabilities.

National Transportation Plan

This Plan outlines the Department of Energy’s (DOE) current strategy and planning for
developing and implementing the transportation system required to transport spent nuclear fuel
(SNF) and high-level radioactive waste (HLW) from where the material is generated or stored to
the proposed repository at Yucca Mountain, Nevada. The Plan describes how DOE’s Office of
Civilian Radioactive Waste Management (OCRWM) intends to develop and implement a safe,
secure and efficient transportation system and how stakeholder collaboration will contribute to

Draft Report for Comment: Identification and Prioritization of the Technical Information Needs Affecting Potential Regulation of Extended Storage and Transportation of Spent Nuclear Fuel

he U.S. Nuclear Regulatory Commission (NRC) regulates storage of spent nuclear fuel (SNF) from commercial nuclear power plants. An increasing amount of the SNF in storage is in dry storage systems, mostly at current and decommissioned plants. As directed by the Commission (in SRM-COMSECY-10-0007; December 6, 2010), in expectation of continued use of dry storage for extended periods of time, the NRC staff is examining the technical needs and potential changes to the regulatory framework that may be needed to continue licensing of SNF storage over periods beyond 120 years.

Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants

How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face rapidly changing technological, economic, and political requirements. In the three decades following WWII, two federal agencies -- the Atomic Energy Commission and the Energy Research and Development Administration -- tried unsuccessfully to develop a satisfactory plan for managing high level wastes.

Management of Commercially Generated Radioactive Waste

In the course of producing electrical power in light water.reactors (LWRs), the uranium
fuel accumulates fission products until the fission process is no longer efficient for power
production. At that point the fuel is removed from the reactor and stored in water basins
to allow radioactivity to partially decay before further disposition. This fuel is referred
to as "spent fuel." Although spent fuel as At is discharged from a reactor is intensely
radioactive, it has been stored safely in moderate quantities for decades. Spent fuel could

Strategies for Application of Isotopic Uncertainties in Burnup Credit

Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest
sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to
propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted
neutron multiplication factor (keff) of the system can have a significant effect on the uncertainty in the
safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport

Nuclear Power And Proliferation Resistance: Securing Benefits, Limiting Risk

Goal: Secure the Benefits, Limit the Risk
The extent to which nuclear power will be a broadly accepted option for meeting future global energy needs depends upon cost, safety, waste management and the ability to limit the associated proliferation risks. While all four considerations are important, this report exclusively examines proliferation risks.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.