Skip to main content

Managing Aging Effects on Dry Cask Storage Systems for Extended Long-Term Storage and Transporation of Used Fuel Rev. 1

Because there is currently no designated disposal site for used nuclear fuel in the United States, the nation faces the prospect of extended long‐term storage (i.e., >60 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S.

Disposal Subcommittee Report to the Full Commission

The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”

Characteristics of Potential Repository Wastes

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for all spent fuels and high-level wastes (HLW) that will eventually be disposed of in a geologic repository. The purpose of this document, and the information contained in the associated computerized data bases and supporting technical reports, is to provide the technical characteristics of the radioactive waste materials that will (or may) be accepted by DOE for interim storage in an MRS or emplacement in a repository as developed under the Nuclear Waste Policy Act Amendment of 1987.

Disposal and Storage of Spent Nuclear Fuel — Finding the Right Balance

The Nuclear Waste Policy Act of 1982, as amended, established a statutory basis
for managing the nation’s civilian (or commercially produced) spent nuclear
fuel. The law established a process for siting, developing, licensing, and constructing
an underground repository for the permanent disposal of that waste.
Utilities were given the primary responsibility for storing spent fuel until it is
accepted by the Department of Energy (DOE) for disposal at a repository —
originally expected to begin operating in 1998. Since then, however, the repository

AN ANALYSIS OF INJURIES AT DEPARTMENT OF ENERGY WORK SITES

The Construction Industry Research and Policy Center (CIRPC) at the University of Tennessee was awarded a contract by the Center to Protect Workers’ Rights, under their grant program with the National Institute of Occupational Safety and Health (NIOSH), to analyze injuries of employees of the U. S. Department of Energy (DOE) and their contractors’ working at DOE work sites. The injury data analyzed were injuries recorded in DOE’s Computerized Accident Incident Reporting System (CAIRS).

Radioactive Waste Repository Licensing, Synopsis of a Symposium, Executive Summary

This book recounts the issues raised and the viewpoints aired at a recent symposium on
repository licensing. It summarizes the problems surrounding the setting of an
Environmental Protection Agency standard for the release of radionuclides and the
regulatory problems inherent in meeting such a standard. Symposium participants came
from a variety of federal agencies and advisory groups, state governments, public interest
groups, engineering firms, national laboratories, and foreign and international
organizations.

DSNF and Other Waste Form Degradation Abstraction

Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.

1999 Design Basis Waste Input Report for Commercial Spent Nuclear Fuel

The purpose of this document is to provide waste quantity and sequencing information that serves as the design basis for commercial spent nuclear fuel (CSNF) arriving at the repository, and the information on the transportation systems that will be used to deliver this fuel. It is intended as input for waste package and repository design analyses needed to ensure that facilities are flexible enough to be capable of receiving, unloading, handling, and emplacing the amounts and types of CSNF expected for receipt under realistic bounding conditions.

Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission

The almost limitless energy of the atom was first harnessed in the United States, as scientists proved the basic physics of nuclear fission in a rudimentary reactor built in the floor of a squash court at the University of Chicago in 1942, and then harnessed that proven energy source in the form of atomic weapons used to end World War II. Scientists who accomplished this feat moved quickly after World War II to harness that power for peaceful uses, focusing primarily on electricity generation for industry, commerce, and household use.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.