Skip to main content

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume II --U.S. Regulations for Geologic Disposal

U.S. efforts to site and construct a deep geologic repository for used fuel and high level
radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late
1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This
legislation codified a national approach for developing a deep geologic repository. Amendment
of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S.
program, most notably the selection of Yucca Mountain as the only site of the three remaining

Community

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume I --The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of the three remaining candidates for continued investigation.

Community

EPRI Review of Geologic Disposal for Used Fuel and High-Level Radioactive Waste: Volume III --Review of National Repository Programs

The effective termination of the Yucca Mountain program by the U.S. Administration in 2009
has left the U.S. program for management of used fuel and high level radioactive waste (HLW)
in a state of uncertainty. In concert with this major policy reset and in response to the resulting
policy vacuum, the President directed the Energy Secretary to establish the Blue Ribbon
Commission on America’s Nuclear Future (BRC) “…to conduct a comprehensive review of
policies for managing the back end of the nuclear fuel cycle and to provide recommendations for

Community

International Review Team Report: A Peer Review of the Yucca Mountain IMARC Total System Performance Assessment EPRI Model

Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel and high level radioactive waste at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based evaluations.

Community

EPRI Yucca Mountain Total System Performance Assessment Code (IMARC) Version 10

Since 1989, EPRI has been conducting independent assessments of the proposed deep geologic repository for the disposal of spent nuclear fuel (SNF) and high level radioactive waste (HLW) at Yucca Mountain, Nevada. EPRI pioneered application of the total system performance assessment (TSPA) approach for evaluating performance of geologic repository systems on a probabilistic basis. Along the way, EPRI developed the Integrated Multiple Assumptions and Release Code (IMARC) as its primary analytical tool for TSPA-based evaluations.

Community

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste: Volume IV - Lessons Learned

The effective termination of the Yucca Mountain program by the U.S. Administration in 2009 has further delayed the construction and operation of a permanent disposal facility for used fuel and high level radioactive waste (HLW) in the United States. In concert with this decision, the President directed the Energy Secretary to establish the Blue Ribbon Commission on America's Nuclear Future to review and provide recommendations on options for managing used fuel and HLW.

Community

MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA

This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.

Community

Nuclear Criticality Calculations for the Wet Handling Facility

The purpose of this calculation is to apply the process described in the TDR-DS0-NU-000001 Rev. 02, Preclosure Criticality Analysis Process Report (Ref. 2.2.25) to aid in establishing design and operational criteria important to criticality safety and to identify potential control parameters and their limits important to the criticality safety of commercial spent nuclear fuel (CSNF) handling operations in the Wet Handling Facility (WHF)

Community

Civilian Nuclear Spent Fuel Temporary Storage Options

The Department of Energy (DOE) is studying a site at Yucca Mountain, Nevada, for a
permanent underground repository for highly radioactive spent fuel from nuclear reactors,
but delays have pushed back the facility’s opening date to 2010 at the earliest. In the
meantime, spent fuel is accumulating at U.S. nuclear plant sites at the rate of about 2,000
metric tons per year. Major options for managing those growing quantities of nuclear spent
fuel include continued storage at reactors, construction of a DOE interim storage site near

Community