Skip to main content

Isotopic Generation and Confirmation of the BWR Appl. Model

The objective of this calculation is to establish an isotopic database to represent commercial spent nuclear fuel (CSNF) from boiling water reactors (BWRs) in criticality analyses performed for the proposed Monitored Geologic Repository at Yucca Mountain, Nevada. Confirmation of the conservatism with respect to criticality in the isotopic concentration values represented by this isotopic database is performed as described in Section 3.5.3.1.2 of the Disposal Criticality Analysis Methodology Topical Report (Reference 7.1).

One Step at a Time: The Staged Development of Geologic Repositories for High-Level Radioactive Waste - Summary

A new report from the National Academies proposes a management approach called “adaptive staging” as a promising means to develop geologic repositories for high-level waste such as the proposed repository at Yucca Mountain, Nevada. Adaptive staging is a learn-as-you-go process that enables project managers to continuously reevaluate and adjust the program in response to new knowledge and stakeholder input.

Direct Radiation Dose Consequence Calculation for Category 1 and 2 Event Sequences

Performance objectives for the geologic repository operations area through permanent closure in 10 CFR 63.111 identify compliance with regulatory dose limits for workers and members of the public as a design objective. The purpose of this design calculation is to determine direct radiation dose consequences for Category 1 and 2 event sequences. It does not include worker dose assessment for recovery operations following Category 1 event sequences.

WHF and RF Thermal Evaluation

The purpose of this analysis is to estimate the peak fuel assembly cladding temperature within the transportation casks that will be received in the WHF and RF, and to compare this value with established temperature limits. Thermally limiting scenarios are evaluated for both normal and off-normal operating conditions, with the off-normal condition defined as a loss of active ventilation. A second purpose of this analysis is to identify a specific room in the surface facilities as thermally limiting of all the rooms, with respect to the potentially highest temperatures on the concrete walls.

Radiation Effects of Isotopic Uncertainty for Burnup Credit Validation

The objective of this calculation is to provide the uncertainty term for fission product and minor actinides which contributes to the determination of the critical limit for burnup credit calculations. The scope of this calculation covers PWR and BWR spent nuclear fuel. This activity supports the Criticality Department's validation of burnup credit. The intended use of these results is in future Criticality Department calculations and analyses.

DSNF and Other Waste Form Degradation Abstraction

Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.

1999 Design Basis Waste Input Report for Commercial Spent Nuclear Fuel

The purpose of this document is to provide waste quantity and sequencing information that serves as the design basis for commercial spent nuclear fuel (CSNF) arriving at the repository, and the information on the transportation systems that will be used to deliver this fuel. It is intended as input for waste package and repository design analyses needed to ensure that facilities are flexible enough to be capable of receiving, unloading, handling, and emplacing the amounts and types of CSNF expected for receipt under realistic bounding conditions.

Attachment 2 - Annual Cost Profile (in Millions of 2007$), reply to Letter to Mr. Tim Frazier

The table is based on historical costs through 2006, which are shaded, and projected costs in the 2008 TSLCC. To convert to 2010$, multiply by 1.0586. The 2008 TSLCC assumes a single repository system capable of accepting and disposing of SNF and HLW equivalent to 122,100 Metric Tons of Heavy Metal (MTHM). This estimate includes all defense wastes currently destined for disposal at Yucca Mountain and projected discharges of SNF from commercial utilities, including the 47 nuclear power reactors that had received license extensions from the NRC as of January 2007.

Configuration Generator Model

The Disposal Criticality Analysis Methodology Topical Report prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.