Skip to main content

Occupational Risk Consequences of the Department of Energy's Approach to Repository Design, Performance Assessment, and Operation in the Yucca Mountain License Application

EPRI has discovered several aspects of the U.S Department of Energy (DOE) proposed design and operation of the Yucca Mountain repository that—if implemented as described in the license application (LA)—could result in unnecessary occupational health and safety risk to workers involved with repository-related activities. This report identifies key DOE conservatisms and focuses on the occupational risk consequences of the DOE's approach to the repository design, performance assessment, and operation.

Community

Program on Technology Innovation: Room at the Mountain

Projected expansion of nuclear power beyond the year 2014 will result in the need for commercial spent nuclear fuel (CSNF) management options in addition to the currently legislated CSNF storage capacity at the proposed Yucca Mountain geological repository. At present, 70,000 MTHM of storage capacity has been authorized, with a projection that 63,000 MTHM would be used for CSNF. This report extends preliminary analyses of the maximum physical capacity of the Yucca Mountain repository, presented in EPRI report 1013523.

Community

Program on Technology Innovation: Summary of the National Academy of Sciences Report: "Going the Distance?"

In May 2003, The National Academy of Sciences (NAS) formed a Committee on Transportation of Radioactive Waste (NAS Committee) to examine the transportation of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States. The focus of this study was on the transportation of SNF in the United States.

Community

Yucca Mountain Licensing Standard Options for Very Long Time Frames: Technical Bases for the Standard and Compliance Assessments

In the existing U.S. Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations governing the spent nuclear fuel and high-level radioactive waste site at Yucca Mountain, Nevada, the time period of compliance was set at 10,000 years. Recently, a Court ordered that EPA and NRC either revise the regulation on this topic to be "based upon and consistent with" recommendations made by a panel of the National Academy of Sciences, who recommended a time period of compliance out to as long as one million years, or seek congressional relief.

Community

Spent Nuclear Fuel Transportation: An Overview

Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility.

Community

Thermal Management Flexibility Analysis

The purpose of this report is to demonstrate that postclosure temperature limits can be met, and certain thermal characteristics of the postclosure thermal reference case can be preserved, with alternative thermal loading schemes. The analysis considers certain variations from the base case.waste stream, the predicted postclosure temperatures that develop within the rock mass due to these waste stream variations, and then compares these temperatures to postclosure temperature limits.

Community

Probabilistic Criticality Consequence Evaluation (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality.

Community

44-BWR WASTE PACKAGE LOADING CURVE EVALUATION

The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU.

Community

Technical Evaluation Report on the Content of the U.S. Department of Energy's Yucca Mountain Repository License Application

This “Technical Evaluation Report on the Content of the U.S. Department of Energy’s Yucca Mountain License Application; Postclosure Volume: Repository Safety After Permanent Closure” (TER Postclosure Volume) presents information on the NRC staff’s review of DOE’s Safety Analysis Report (SAR), provided on June 3, 2008, as updated by DOE on February 19, 2009. The NRC staff also reviewed information DOE provided in response to NRC staff’s requests for additional information and other information that DOE provided related to the SAR.

Community