Skip to main content

EPRI Review of Geologic Disposal for Used Fuel and High Level Radioactive Waste Volume I—The U.S. Site Selection Process Prior to the Nuclear Waste Policy Amendments Act

U.S. efforts to site and construct a deep geologic repository for used fuel and high level radioactive waste (HLW) proceeded in fits and starts over a three decade period from the late 1950s until 1982, when the U.S. Congress enacted the Nuclear Waste Policy Act (NWPA). This legislation codified a national approach for developing a deep geologic repository. Amendment of the NWPA in 1987 resulted in a number of dramatic changes in direction for the U.S. program, most notably the selection of Yucca Mountain as the only site of the three remaining candidates for continued investigation.

Consolidated Interim Storage of Commercial Spent Nuclear Fuel

Approximately 54,000 tons of spent nuclear fuel are stored at operating nuclear power
plants and several decommissioned power plants throughout the country. Spent fuel
storage at these sites was never intended to be permanent. The current Federal plan is to
place the fuel in a repository for permanent disposal in Nevada at Yucca Mountain.
Recently, appropriations committees in Congress suggested building one or more Federal
sites for consolidated interim storage of spent fuel. Several reasons were identified. The

A Multiattribute Utility Analysis of Sites Nominated for Characterization for the First Radioactive-Waste Repository--A Decision-Aiding Methodology

The Department of Energy (DOE), pursuant to the Atomic Energy Act of 1954
as amended, the Energy Reorganization Act of 1974, the Department of Energy
Organization Act of 1977, and the Nuclear Waste Policy Act of 1982 (the Act),
has the responsibility to provide for the disposal of high-level radioactive
waste and spent nuclear fuel.* The DOE selected mined geologic repositories
as the preferred means for the disposal of commercially generated high-level
radioactive waste and spent fuel (Federal Register, Vol. 46, p. 26677, May 14,

Confidence in the Long-term Safety of Deep Geological Repositories--Its Development and Communication

Confidence in the long-term safety of deep geological disposal, and the ways in which this
confidence can be obtained and communicated, are topics of great importance to the radioactive waste
management community.1
The technical aspects of confidence have been the subject of considerable debate, especially
the concept of model validation. It has, for example, been pointed out that it is impossible to describe
fully the evolution of an open system, such as a repository and its environment, that cannot be

Recommendation by the Secretary of Energy of Candidate Sites for Site Characterization for the First Radioactive-Waste Repository

The Nuclear Waste Policy Act of 1982 (the Act), established a
step-by-step process for the siting of the nation's first repository for
high-level radioactive waste and spent fuel. The Act gave the Department of
Energy (DOE) the primary responsibility for conducting this siting process.
The first step in the process laid out in the Act was the development by
the DOE, with the concurrence of the Nuclear Regulatory Commission (NRC), of
general guidelines to be used by the Secretary of the DOE (the Secretary) in

The Report to the President and the Congress by the Secretary of Energy on the Need to a Second Repository

The Nuclear Waste Policy Act of 1982, as amended (NWPA), establishes a process for the siting, construction and operation of one or more national repositories for permanent disposal of the Nation’s spent nuclear fuel (SNF) and high-level radioactive waste (HLW). In 1987, after the Department of Energy (the Department or DOE) had conducted studies of nine potential repository sites located throughout the United States, Congress amended the NWPA and selected the Yucca Mountain site in Nye County, Nevada as the only site for further study for the first national repository.

Environmental Impact Statement, Management of Commercially Generated Radioactive Waste. Volume 1

In the course of producing electrical power in light water reactors (LWRs), the uranium
fuel accumulates fission products until the fission process is no longer efficient.for power
production. At that point the fuel is removed from the reactor and stored in water basins
to allow radioactivity to partially decay before further disposition. This fuel is referred
to as "spent fuel." Although spent fuel as it is discharged from a reactor is intensely
radioactive, it has been stored safely in moderate quantities for decades. Spent fuel could

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.