Skip to main content

Standards & Regulations for the Geologic Disposal of Spent Nuclear Fuel and High-Level Waste

This paper draws on my experience as a reviewer of the scientific programs and performance assessments of the geological repository for transuranic waste at the Waste Isolation Pilot Plant in New Mexico and the proposed repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. In addition, I have served on numerous committees of the National Research Council that have addressed many aspects of nuclear waste management.

One Step at a Time: The Staged Development of Geologic Repositories for High-Level Radioactive Waste - Summary

A new report from the National Academies proposes a management approach called “adaptive staging” as a promising means to develop geologic repositories for high-level waste such as the proposed repository at Yucca Mountain, Nevada. Adaptive staging is a learn-as-you-go process that enables project managers to continuously reevaluate and adjust the program in response to new knowledge and stakeholder input.

External Criticality Risk of Immobilized Plutonium Waste Form in a Geologic Repository

This technical report provides an updated summary of the waste package (WP) external criticalityrelated
risk of the plutonium disposition ceramic waste form, which is being developed and
evaluated by the Office of Fissile Materials Disposition of the U.S. Department of Energy (DOE).
The ceramic waste form consists of Pu immobilized in ceramic disks, which would be embedded
in High-Level Waste (HLW) glass in the HLW glass disposal canisters, known as the "can-incanister"

Analysis of the Total System Life Cycle Cost of the Civilian Radioactive Waste Management Program

The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program represents the Office of Civilian Radioactive Waste Management's most recent estimate of the costs to dispose of the Nations's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). This TSLCC analysis projects all Program costs through 2119 for a surrogate, single potential repository. The design and emplacement concepts in this TSLCC analysis are the same as those presented in the Monitored Geologic Repository Project Description Document.

Evaluation of Codisposal Viability for Aluminum-Clad DOE-Owned Spent Fuel: Phase I Intact Codisposal Canister

This evaluation is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide analyses of disposal of aluminum (AI)-based Department of Energy-owned research reactor spent nuclear fuel (DOE-SNF) in a codisposal waste package with five canisters of high-level waste (HLW). The analysis was performed in sufficient detail to establish the technical viability of the Al-based DOE-SNF codisposal canister option.

Characteristics of Spent Fuel, High-Level Waste, and Other Radioactive Wastes Which May Require Long-Term Isolation, Rev. 0

The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document.

Co-Mingled and Defense-Only Repositories

At the request of the staff to the Blue Ribbon Commission on America’s Nuclear Future (“BRC”), we have reviewed the following questions:
1. Is there legal authority for DOE or any other entity to undertake to site a repository for “co-mingled” nuclear materials (i.e., civilian and defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW)) at any site other than Yucca Mountain?

Managing the Nation's Commercial High-Level Radioactive Waste

This report presents the findings and conclusions of OTA's analysis of Federal policy
for the management of commercial high-level radioactive waste. It represents a major update
and expansion of the analysis presented to Congress in our summary report, Managing
Commercial High-Level Radioactive Waste, published in April of 1982 during the
debate leading to passage of the Nuclear Waste Policy Act of 1982 (NWPA). This new
report is intended to contribute to the implementation of NWPA, and in particular to

DOE SNF Phase I and II Summary Report

There are more than 250 forms of U.S. Department of Energy (DOE)­owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program (NSNFP) has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. For each fuel group, a fuel type that represents the characteristics of all fuels in that group has been selected for detailed analysis.

The NUMO Structured Approach to HLW Disposal in Japan

The constraints set by the Japanese HLW disposal programme – particularly associated with
the decision to initiate siting by an open call for volunteers to host a geological repository –
pose particular challenges for repository project management. In order to maintain the
flexibility required to respond to the conditions found at volunteer sites, NUMO has not
published reference designs or site characterisation plans, as is normal for programmes
progressing by site nomination. Instead, we have developed a methodology – the NUMO

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.