Skip to main content

SAS2H Analysis of Radiochemical Assay Samples from Yankee Rowe PWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Community

Status of Rod Consolidation

Several rod consolidation systems have been demonstrated in the United States with simulated boiling water reactor (BWR) and pressurized water reactor (PWR) fuel. The first U.S. consolidation of irradiated fuel was successfully demonstrated with four PWR fuel assemblies at the Oconee Nuclear Station in October-November 1982 (1-3) and with one PWR fuel assembly at Maine Yankee in August 1983(4). Maine Yankee has received approval from the U.S. Nuclear Regulatory Commission (NRC) to consolidate up to 20 fuel assemblies(5).

Community

Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Community

Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy

The Department of Energy’s Office of Fuel Cycle Technologies (FCT) in the Office of Nuclear Energy (DOE-NE) has conducted a technical review and assessment of the total current inventory [~70,150 MTHM (metric ton of heavy metal) as of 2011] of domestic discharged used nuclear fuel (UNF) and estimated that up to ~1700 MTHM of existing commercial UNF should be considered for retention to support research, development, and demonstration (RD&D) needs and national security interests.

Community

Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form

The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/burnup pairs expected for the MOX SNF.

Community

Critical Limit Development For 21 PWR Waste Package

This calculation uses regression (CLReg V1.0 computer code) and non-parametric statistical methods, as specified in References 1 and 12, to develop the critical limit for the 21 Pressurized Water Reactor (PWR) spent nuclear fuel (SNF) waste package (WP) in the proposed geologic repository at Yucca Mountain, Nevada. The critical limit is a limiting value of the effective neutron multiplication factor at which a WP configuration is considered potentially critical.

Community

Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages

Spent fuel transportation and storage cask designs based on a burnup credit approach must
consider issues that are not relevant in casks designed under a fresh-fuel loading assumption. For
example, the spent fuel composition must be adequately characterized and the criticality analysis
model can be complicated by the need to consider axial burnup variations. Parametric analyses are
needed to characterize the importance of fuel assembly and fuel cycle parameters on spent fuel

Community

Commercial Nuclear Waste: Effects of a Termination of the Yucca Mountain Repository Program and Lessons Learned

DOE decided to terminate the Yucca Mountain repository program because, according to DOE officials, it is not a workable option and there are better solutions that can achieve a broader national consensus. DOE did not cite technical or safety issues. DOE also did not identify alternatives, but it did create a Blue Ribbon Commission to evaluate and recommend alternatives.

Community