Skip to main content

Program on Technology Innovation: Advanced Fuel Cycles - Impact on High-Level Waste Disposal

This report presents the results of a dynamic simulation analysis for deployment of advanced light water reactors (LWRs) and fast burner reactors, as proposed by the Global Nuclear Energy Partnership (GNEP) program. Conditions for the analysis were selected for their potential to challenge the nuclear fuel simulation codes that were used, due to the large variations in nuclear fuel composition for the burner reactors before equilibrium conditions are approached. The analysis was performed in a U.S.

Community

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors

Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pressurized water reactor (PWR) fleet.

Community

Parametric Study of Front-End Nuclear Fuel Cycle Costs Using Reprocessed Uranium

This study evaluates front-end nuclear fuel cycle costs assuming that uranium recovered during the reprocessing of commercial light-water reactor (LWR) spent nuclear fuel is available to be recycled and used in the place of natural uranium. This report explores the relationship between the costs associated with using a natural uranium fuel cycle, in which reprocessed uranium (RepU) is not recycled, with those associated with using RepU.

Community

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

Community

Key Issues Associated with Interim Storage of Used Nuclear Fuel

The issue of interim storage of used (spent)1 fuel is dependent on a number of key factors, some
of which are not known at this time but are the subject of this study. The first is whether or not
the Yucca Mountain Project continues or is cancelled such that it may be able to receive spent
fuel from existing and decommissioned nuclear power stations. The second is whether the United
States will pursue a policy of reprocessing and recycling nuclear fuel. The reprocessing and

Community

Draft Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

This Programmatic Environmental Impact Statement (PEIS) provides an analysis of the potential
environmental impacts of the proposed Global Nuclear Energy Partnership (GNEP) program,
which is a United States (U.S.) Department of Energy (DOE) program intended to support a safe,
secure, and sustainable expansion of nuclear energy, both
domestically and internationally. Domestically, the
GNEP Program would promote technologies that support
economic, sustained production of nuclear-generated
electricity, while reducing the impacts associated with

Community

Draft Global Nuclear Energy Partnership Programmatic Environmental Impact Statement Summary

The Global Nuclear Energy Partnership (GNEP) Program, a United States (U.S.) Department of
Energy (DOE) program, is intended to support a safe, secure, and sustainable expansion of
nuclear energy, both domestically and internationally. Domestically, the GNEP Program would
promote technologies that support economic, sustained
production of nuclear-generated electricity, while
reducing the impacts associated with spent nuclear fuel
disposal and reducing proliferation risks. DOE envisions
changing the U.S. nuclear energy fuel cycle1 from an

Community