Skip to main content

Nuclear Power Joint Fact-Finding

"Nuclear power has long been controversial; consequently, the debate about its reemergence requires a fresh assessment of the facts about the technology, its economics and regulatory oversight, and the risks and benefits of its expansion. In the past year, the Keystone Center assembled a group of 27 individuals (see the Endorsement page for a list of Participants) with extensive experience and unique perspectives to develop a joint understanding of the “facts” and for an objective interpretation of the most credible information in areas where uncertainty persists.

The Future of the Nuclear Fuel Cycle: An Interdisciplinary MIT Study

"In 2003 MIT published the interdisciplinary study The Future of Nuclear Power. The underlying motivation was that nuclear energy, which today provides about 70% of the “zero”-carbon electricity in the U.S., is an important option for the market place in a low-carbon world. Since that report, major changes in the U.S. and the world have taken place as described in our 2009 Update of the 2003 Future of Nuclear Power Report. Concerns about climate change have risen: many countries have adopted restrictions on greenhouse gas emissions to the atmosphere, and the U.S.

The Future of Nuclear Power: An Interdisciplinary MIT Study (2003)

"This study analyzes what would be required to retain nuclear power as a significant option for reducing greenhouse gas emissions and meeting growing needs for electricity supply. Our analysis is guided by a global growth scenario that would expand current worldwide nuclear generating capacity almost threefold, to 1000 billion watts, by the year 2050. Such a deployment would avoid 1.8 billion tonnes of carbon emissions annually from coal plants, about 25% of the increment in carbon emissions otherwise expected in a business-as-usual scenario.

Fuel Cycle Potential Waste Inventory for Disposition

The purpose of this report is to provide an estimate of potential waste inventory and waste form
characteristics for the DOE UNF and HLW and a variety of commercial fuel cycle alternatives in order to
support subsequent system-level evaluations of disposal system performance. This report is envisioned as
a “living document” which will be revised as specific alternative fuel cycles are developed

International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues - Results from Phase 1 on UOx Fuels

Although there are many reactor system benchmarks in the literature, they mostly
concentrate on the reactor system in isolation with only a few considering the fuel cycle.
However, there is currently increased emphasis on the performance of reactor systems
linked to their associated fuel cycle (Generation-IV for example). The published
international benchmark studies which relate to burn-up depletion calculations are
restricted to specific aspects of the fuel cycle:

Closing the US Fuel Cycle: Siting Considerations for the Global Nuclear Energy Partnership Facilities-Siting the Advanced Fuel Cycle Facility

The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States (U.S.) with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that introduces the most advanced technologies of today and builds on recent breakthroughs in U.S. national laboratories while drawing on international and industry partnerships.

IAEA Information Circular - Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

1. The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management was adopted on 5 September 1997 by a Diplomatic Conference convened by the International Atomic Energy Agency at its headquarters from 1 to 5 September 1997. The Joint Convention was opened for signature at Vienna on 29 September 1997 during the forty-first session of the General Conference of the International Atomic Energy Agency and will remain open for signature until its entry into force. 2.

A review of the Nuclear Waste Disposal Problem

Dealing with the problems posed by nuclear waste management is a major issue confronting continued use of the nuclear fuel cycle. Large amounts of radioactive wastes have already been generated as a result of past nuclear reactor operations, but these wastes are being temporarily kept in aboveground storage facilities awaiting a government policy decision on final disposition. Although research on various technologies to dispose of radioactive wastes is given high priority, a commercial waste disposal facility is not expected to be in operation before 1985.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.