Skip to main content

Disposal Subcommittee Report to the Full Commission

The Disposal Subcommittee of the Blue Ribbon Commission on America’s Nuclear Future (BRC) addressed a wide-ranging set of issues, all bearing directly on the central question: “How can the United States go about establishing one or more disposal sites for high-level nuclear wastes in a manner and within a timeframe that is technically, socially, economically, and politically acceptable?”

Spent Nuclear Fuel Management: How centralized interim storage can expand options and reduce costs

The purpose of this study is to assist decision makers in evaluating the centralized interim
storage option. We explore the economics of centralized interim storage under a wide variety of
circumstances. We look at how a commitment to move forward with centralized interim storage
today could evolve over time. And, we evaluate the costs of reversing a commitment toward
centralized storage if it turns out that such a decision is later considered a mistake. We have not

Identification, Description, and Characterization of Existing and Alternative Nuclear Energy Systems

Fundamentally, a nuclear energy system uses nuclear fission to create heat, which is then available for generating electricity or other applications, including seawater desalination, heating, and production of other fuels. The nuclear energy system as currently deployed in the United States, Figure 1, consists of a number of integrated components, beginning with the natural resources required for nuclear fuel, followed by fissioning of the fuel in reactors connected to electricity generation facilities, and ending with the disposition of all wastes, including used nuclear fuel (UNF).

CURRENT U.S. DEPARTMENT OF ENERGY NUCLEAR ENERGY RD&D PROGRAMS AND PLANS

This document summarizes DOE’s commercial nuclear energy RD&D program based on a R&D roadmap and on DOE/NE’s budget request for fiscal year 2011. The roadmap is written at a high level and is mostly qualitative in terms of activities, milestones and decisions to be made and does not contain budget information. The fiscal year 2011 budget request contains more specific and detailed information on activities, milestones, decisions, and budgets but only for fiscal year 2011 and the two preceding fiscal years.

Attachment 2 - Annual Cost Profile (in Millions of 2007$), reply to Letter to Mr. Tim Frazier

The table is based on historical costs through 2006, which are shaded, and projected costs in the 2008 TSLCC. To convert to 2010$, multiply by 1.0586. The 2008 TSLCC assumes a single repository system capable of accepting and disposing of SNF and HLW equivalent to 122,100 Metric Tons of Heavy Metal (MTHM). This estimate includes all defense wastes currently destined for disposal at Yucca Mountain and projected discharges of SNF from commercial utilities, including the 47 nuclear power reactors that had received license extensions from the NRC as of January 2007.

An Economic Analysis of Select Fuel Cycles Using the Steady-State Analysis Model for Advanced Fuel Cycles Schemes (SMAFS)

This report evaluates the relative economics of alternative fuel cycles compared to the current
U.S. once-through fuel cycle, including concepts under consideration by the U.S. Department of
Energy’s (DOE) Global Nuclear Energy Partnership (GNEP). EPRI utilized a model developed
by the Nuclear Energy Agency (NEA), Steady-state analysis Model for Advanced Fuel Cycle
Schemes (SMAFS), to evaluate fuel cycle alternatives. The report also evaluates potential
financing options for a fuel recycling facility. Please note that this report contains preliminary

The Problem of used nuclear fuel: lessons for interim solutions from a comparative cost analysis

An acceptable long-term solution for used (spent) fuel from nuclear power reactors has evaded all countries engaged in the civilian
nuclear fuel cycle. Furthermore, many countries are trying to develop interim storage solutions that address the shortage of storage in
the spent fuel cooling pools at reactors. The United States has a particularly acute problem due to its adherence to an open fuel cycle
and its large number of reactors. Two main options are available to address the spent fuel problem: dry storage on-site at reactors and

Interim Storage of Spent Nuclear Fuel A Safe, Flexible, and Cost-Effective Near-Term Approach to Spent Fuel Management

The management of spent fuel from nuclear power
plants has become a major policy issue for virtually every
nuclear power program in the world. For the nuclear industry, finding sufficient capacity for storage and processing or
disposal of spent fuel is essential if nuclear power plants are
to be allowed to continue to operate. At the same time, the
options chosen for spent fuel management can have a substantial impact on the political controversies, proliferation
risks, environmental hazards, and economic costs of the

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.