Skip to main content

Nuclear Criticality Calculations for Canister-Based Facilities - DOE SNF

The purpose of this calculation is to perform waste-form specific nuclear criticality safety calculations to aid in establishing criticality safety design criteria, and to identify design and process parameters that are potentially important to the criticality safety of Department of Energy (DOE) standardized Spent Nuclear Fuel (SNF) canisters. It is intended that the results of the criticality safety calculations provided in this document will

Criticality Analysis of Pu and U Accumulations in a Tuff Fracture Network

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of uranium minerals (soddyite), plutonium oxide (Pu01), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water or clayey material fraction in the accumulation and the water fraction in the tuff

SAS2H Analysis of Radiochemical Assay Samples from Calvert Cliffs PWR Reactor

The purpose of this design analysis is to determine the accuracy of the SAS2H module of SCALE 4.3 in predicting isotopic concentrations of spent fuel assemblies. The objective is to develop a methodology for modeling assemblies similar to those evaluated within this analysis and to establish the consistency of SAS2H predictions. The results of this analysis may then be applied to future depletion calculations using SAS2H in which no measurements are available.

Report on Intact and Degraded Criticality for Selected Plutonium Waste Forms in a Geologic Repository

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Multiscale Thermohydrologic Model

The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift.

LCEs for Naval Reactor Benchmark Calculations

The purpose of this engineering calculation is to document the MCNP4B2LVevaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories.

Nuclear Criticality Calculations for Canister-Based Facilities - Commercial SNF

The results of the MCNP criticality safety calculations described in this document are presented in Section 7.1. Based on the results presented attributes of the TAD canister-based systems that are important to ensuring their subcriticality are established. These attributes can be categorized according to the criticality control parameter that is impacted. Based on the categorization presented it is seen that moderation control is the underlying criticality control parameter for TAD canister-based systems containing CSNF with a maximum initial enrichment of 5 wt.% 235U/U.

Criticality Analysis of Pu and U accumulations in a Tuff Fracture Network

The objective of this analysis is to evaluate accumulations within the thermally altered tuff surrounding a drift. The evaluation examines accumulation of Uranium minerals (sddyite), Plutonium oxide (Pu2O), and combinations of these materials. A hypothetical model of the tuff is used to provide insight into the factors that affect criticality for this near-field scenario. The factors examined include: the size of the accumulation, the fissile composition of the accumulation, the water of clayey material in the accumulation and the water fraction in the tuff.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.