Skip to main content

SAS2H Generated Isotopic Concentrations for B&W 15xl5 PWR Assembly (SCPB: N/A)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

Initial Radionuclide Inventories

The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only.

Probabilistic Criticality Consequence Evaluation

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development (WPD) department with the objective of providing a comprehensive, conservative estimate of the consequences of the criticality which could possibly occur as the result of commercial spent nuclear fuel emplaced in the underground repository at Yucca Mountain. The consequences of criticality are measured principally in terms of the resulting changes in radionuclide inventory as a function of the power level and duration of the criticality.

Drift-Scale THC Seepage Model

The purpose of this report is to document the thermal-hydrologic-chemical (THC) seepage model and model simulations. The simulations predict the composition of fracture water that could potentially seep into repository emplacement drifts and the composition of the associated gas phase. The THC seepage model is not used to feed the total system performance assessment (TSPA) for the license application (LA).

THC Sensitivity Study of Heterogeneous Permeability and Capillarity Effects

The purpose of this report is to <,locument the sensitivity of the drift-scale thermal-hydrologic- chemical (THC) seepage model (SNL 2007 [DIRS 177404]) to heterogeneities in permeability and capillarity, which could affect predicted fluxes and chemistries of water and gases seeping into the emplacement drifts. This report has been developed following Technical Work Plan for: Revision of Model Reports for Near-Field and In-Drift Water Chemistry (SNL 2007 [DIRS 179287]).

Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack Defense High-Level Waste (5-DHLW) Waste Package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.

Criticality Calculation for the Most Reactive Degraded Configurations of the FFTF SNF Codisposal WP Containing an Intact Ident-69 Container

The objective of this calculation is to perform additional degraded mode criticality evaluations of the Department of Energy's (DOE) Fast Flux Test Facility (FFTF) Spent Nuclear Fuel (SNF) codisposed in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP). The scope of this calculation is limited to the most reactive degraded configurations of the codisposal WP with an almost intact Ident-69 container (breached and flooded but otherwise non-degraded) containing intact FFTF SNF pins.

Degraded Waste Package Criticality: Summary Report of Evaluations Through 1996

The purpose of this document is to summarize the degraded waste package disposal criticality evaluations which were performed in fiscal years I995 and I996. These evaluations were described in detail in 4 previous documents (Refs. I through 4). The initial version of this summary has been described in the I996 Disposal Criticality Analysis Methodology Technical Report (Ref. 5). A topical report planned for 1998 will present the methodology in its final form for approval by the US Nuclear Regulatory Commission.

Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository

The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, keff> results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing kerr·

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.