Skip to main content

Analysis of Dust Deliquescence for FEP Screening

The purpose of this report is to evaluate the potential for penetration of the Alloy 22 (UNS N06022) waste package outer barrier by localized corrosion due to the deliquescence of soluble constituents in dust present on waste package surfaces. The results support a recommendation to exclude deliquescence-induced localized corrosion (pitting or crevice corrosion) of the outer barrier from the total system performance assessment for the license application (TSPA-LA).

PWR Axial Profile Evaluation

This calculation compares results from criticality evaluations for a 21-assembly pressurized water reactor (PWR) waste package based on 12 axial burnup profile representations for commercial spent nuclear fuel (SNF) assemblies. The burnup profiles encompass the axial variations caused by different fuel assembly irradiation histories in a commercial PWR, including end effects, and the concomitant effect on reactivity in the waste package. The bounding axial burnup profiles in Table T of reference 6.3 are used for this analysis.

Isotopic Models for Commercial SNF Burnup Credit

Disposal Criticality Analysis Methodology Topical Report1 describes a methodology for performing postclosure criticality analyses within the repository at Yucca Mountain, Nevada. An important component of the postclosure criticality analysis is the calculation of conservative isotopic concentrations for spent nuclear fuel. This report documents the isotopic calculation methodology. The isotopic calculation methodology is shown to be conservative based upon current data for pressurized water reactor and boiling water reactor spent nuclear fuel.

Intact and Degraded Mode Criticality Calculations for the Codisposal of Fort Saint Vrain HTGR Spent Nuclear Fuel in a Waste Package

The objective of these calculations is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) Fort Saint Vrain (FSV) commercial High Temperature Gas Reactor (HTGR) spent nuclear fuel. This analysis evaluates codisposal in a 5-Defense High-Level Waste (5-DHLW/DOE SNF) Long Waste Package (WP)(CRWMS M&O 2000c, Attachment V), which is to be placed in a potential monitored geologic repository (MGR).

Preclosure Consequence Analyses

The purpose of this calculation is to demonstrate that the preclosure performance objectives specified in 10 CFR 63.111(a) and 10 CFR 63.111(b) (Reference 2.2.1) have been met for the proposed design and operations in the geologic repository operations area (GROA) during normal operations and Category 1 event sequences, and following Category 2 event sequences. Category 1 event sequences are those natural and human-induced event sequences that are expected to occur one or more times before permanent closure of the repository.

Cladding Degradation Summary for LA

The purpose of this analysis report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The analysis addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository.

Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation.

Reactor Record Uncertainty Determination

The objective of this calculation is to evaluate commercial spent nuclear fuel (CSNF) bumup uncertainty based on pressurized water reactor (PWR) and boiling water reactor (BWR) records kept by each utility. The bumup uncertainties will be used to adjust either the waste package loading curves or the bumup values of assemblies shipped to the repository.
This engineering calculation supports the burnup credit methodology in Reference 1 and is performed in accordance with the AREVAIFANP procedures in References 2 and 3.

Soil-Related Input Parameters for the Biosphere Model

This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), referred to in this report as the biosphere model. Biosphere Model Report (BSC 2004 [DIRS 169460]) describes the details of the conceptual and mathematical biosphere models and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure total system performance assessment (TSPA) for the Yucca Mountain repository.

Calibrated Unsaturated Zone Properties

The purpose of this report is to document the calibrated property sets for unsaturated zone (UZ) flow and transport process models (UZ models). The calibration of the property sets is performed through inverse modeling using a previously validated model. This work followed, and was planned in Technical Work Plan for: Unsaturated Zone Flow, Drift Seepage and Unsaturated Zone Transport Modeling (BSC 2006 [DIRS 177465], Sections 1 and 2.1.2).

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.