Skip to main content

Waste Packages and Source Terms for the Commercial 1999 Design Basis Waste Streams

This calculation is prepared by the Monitored Geologic Repository Waste Package Requirements & Integration Department. The purpose of this calculation is to compile source term and commercial waste stream information for use in the analysis of waste package (WP) designs for commercial fuel. Information presented will consist of the number of WPs, source terms, metric tons of uranium, and the average characteristics of assemblies to be placed in each WP design. The source terms provide thermal output, radiation sources, and radionuclide inventories.

LCE for Research Reactor Benchmark Calculations

The purpose of this calculation is to document the MCNP4B2L V evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 182 different cases with varied design parameters. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (keff) for various critical configurations.

MOX Spent Nuclear Fuel and LaBS Glass for TSPA-LA

This analysis provides information necessary for total system performance assessment (TSPA) for the license application (LA) to include the excess U.S. Department of Energy (DOE) plutonium in the form of mixed oxide (MOX) spent nuclear fuel and lanthanide borosilicate (LaBS) glass. This information includes the additional radionuclide inventory due to MOX spent nuclear fuel and LaBS glass and the analysis that shows that the TSPA models for commercial spent nuclear fuel (CSNF) and high-level waste (HLW) degradation are appropriate for MOX spent nuclear fuel and LaBS glass, respectively.

Saturated Zone In-Situ Testing

The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations.

Criticality Evaluation of Plutonium Disposition Ceramic Waste Form: Degraded Mode

The purpose of this calculation is to perform degraded mode criticality evaluations of plutonium disposed in a ceramic waste form and emplaced in a Monitored Geologic Repository (MGR). A 5 Defense High-Level Waste (DHLW) Canister Waste Package (WP) design, incorporating the can-in-canister concept for plutonium immobilization is considered for this calculation. Each HLW glass pour canister contains 7 tubes. Each tube contains 4 cans, with 20 ceramic disks (immobilized plutonium) in each.

CRC Reactivity Calculations for McGuire Unit 1

The purpose of this calculation is to document the McGuire Unit 1 pressurized water reactor (PWR) reactivity calculations performed as part of the commercial reactor critical (CRC) evaluation program. CRC evaluation reactivity calculations are performed at a number of statepoints, representing reactor start-up critical conditions at either beginning of life (BOL), beginning of cycle (BOC), or mid-cycle when the reactor resumed operation after a shutdown.

Criticality Safety and Shielding Evaluations of the Codisposal Canister in the Five-Pack DHLW Waste Package

The objective of this analysis is to characterize a codisposal canister containing MIT or ORR fuel in the Five-Pack defense high level waste (DHLW) waste package (WP) to demonstrate concept viability related to use in the Mined Geologic Disposal System (MGDS) environment for the postclosure time frame. The purpose of this analysis is to investigate the disposal criticality and shielding issues for the DHLW WP and establish DHLW WP and codisposal canister compatibility with the MGDS, and to provide criticality and shielding evaluations for the preliminary DHLW WP design.

Report on intact and Degraded Criticality for Selected Plutonium Waste Forms in a. Geologic Repository, Volume I: MOX SNF

As part of the plutonium waste form development and down-select process, repository analyses have been conducted to evaluate the long-term performance of these forms for repository acceptance. Intact and degraded mode criticality analysis of the mixed oxide (MOX) spent fuel is presented in Volume I, while Volume II presents the evaluations of the waste form containing plutonium immobilized in a ceramic matrix.

Westinghouse MOX SNF Isotopic Source

The purpose of this calculation is to develop an estimate of the isotopic content as a function of time for mixed oxide (MOX) spent nuclear fuel (SNF) assemblies in a Westinghouse pressurized water reactor (PWR). These data will be used as source data for criticality, thermal, and radiation shielding evaluations of waste package (WP) designs for MOX assemblies in the Monitored Geologic Repository (MGR).

Development of Technical Data Needed to Justify Full Burnup Credit in Criticality Safety Licensing Analyses Involving Commercial Spent Nuclear Fuel

This technical work plan (TWP) describes the planning of burnup credit (BUC) experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Lead Laboratory for Repository Systems. This TWP serves to coordinate and integrate a program to implement Work Packages S31023 to S31036 of the fiscal year 2007 annual work plan (AWP) for the Lead Laboratory.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.