Skip to main content

Enrico Fermi Fast Reactor Spent Nuclear Fuel Criticality Calculations: Degraded Mode

The objective of this calculation is to characterize the nuclear criticality safety concerns
associated with the codisposal of the Department of Energy’s (DOE) Enrico Fermi (EF) Spent
Nuclear Fuel (SNF) in a 5-Defense High-Level Waste (5-DHLW) Waste Package (WP) and
placed in a Monitored Geologic Repository (MGR). The scope of this calculation is limited to
the determination of the effective neutron multiplication factor (keff) for the degraded mode
internal configurations of the codisposal WP. The results of this calculation and those of Ref. 8

Initial Waste Package Probabilistic Criticality Analysis: Multi-Purpose Canister With Disposal Container (TBV)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;

Commercial Reactor Reactivity Analysis For Grand Gulf, Unit 1

The objective of this calculation is to document the Grand Gulf Unit 1 (GG1) reactivity calculations for sixteen critical statepoints in cycles 4 through 8. The GG1 reactor is a boiling water reactor (BWR) owned and operated by Entergy Operations Inc. The Commercial Reactor Criticality (CRC) evaluations support the development and validation of the neutronic models used for criticality analyses involving commercial spent nuclear fuel to be placed in a geologic repository. This calculation is performed as part of the evaluation in the CRC program.

Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculations: Intact SNF Canister

The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.

Criticality Potential of Waste Packages Affected by Igneous Intrusion

The objective of this calculation is to evaluate the criticality potential for co-disposal waste packages affected by an igneous intrusion disruptive event in the emplacement drifts. The scope of this calculation is limited to U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) types in DOE standardized SNF canisters or Multi-Canister Overpack (MCO) Canisters.

Initial Waste Package Probabilistic Criticality Analysis: Uncanistered Fuel

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide an assessment of the present waste package design from a criticality risk standpoint. The specific objectives of this initial analysis are to:
1. Establish a process for determining the probability of waste package criticality as a function of time (in terms of a cumulative distribution function, probability distribution function, or expected number of criticalities in a specified time interval) for various waste package concepts;

Evaluation of Internal Criticality of the Plutonium Disposition MOX SNF Waste Form

The purpose of this calculation is to perform a parametric study to determine the effects of fission product leaching, assembly collapse, and iron oxide loss (Me203) on the reactivity of a waste package (WP) containing mixed oxide (MOX) spent nuclear fuel (SNF). Previous calculations (CRWMS M&O 1998a) have shown that the criticality control features of the WP are adequate to prevent criticality of a flooded WP for all the enrichment/ burnup pairs expected for the MOX SNF.

Configuration Model Generator

The Disposal Criticality Analysis Methodology Topical Reporta prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the Configuration Generator Model for In-Package Criticality that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state.

PWR Axial Burnup Profile Analysis

The purpose of this activity is to develop a representative “limiting” axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to

Number of Waste Packages Hit By Igneous Events

The purpose of this report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event intersecting a repository at YuccaMountain. The analyses include disruption from an igneous intrusion and from an igneous eruption. The analyses also support the evaluation of the potential consequences from a future event as part of the total system performance assessment (TSPA) for the license application for the Yucca Mountain Project.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.