Skip to main content

CONSIDERATIONS FOR AN INTEGRATED STORAGE, TRANSPORTATION, AND DISPOSAL CANISTER

Direct disposal of the large canisters currently being used by the commercial nuclear power industry is beyond the current experience base domestically and internationally and potentially represents many other significant engineering and scientific challenges. Pragmatically, it is reasonable to assume that the packages that will be disposed of in the future may be significantly different from what is being used for storage today.

Route Identification Project: Final Report to the U.S. Department of Energy's Office of Civilian Radioactive Waste Management

The member states of the Council of State Governments' Midwestern Radioactive Materials Transportation Committee feel that route selection for shipments under the Nuclear Waste Policy Act (NWPA) should begin with a regional review of available routes, since states are in a better position than the federal government to judge the quality of potential highway and rail routes through their jurisdictions. Through its cooperative agreement with the U.S.

Strategies for Application of Isotopic Uncertainties in Burnup Credit

Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest
sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to
propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted
neutron multiplication factor (keff) of the system can have a significant effect on the uncertainty in the
safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport

Federal Policy for the Disposal of Highly Radioactive Wastes from Commercial Nuclear Power Plants

How to dispose of highly radioactive wastes from commercial nuclear power plants is a question that has remained unresolved in the face rapidly changing technological, economic, and political requirements. In the three decades following WWII, two federal agencies -- the Atomic Energy Commission and the Energy Research and Development Administration -- tried unsuccessfully to develop a satisfactory plan for managing high level wastes.

OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results

Burnup credit is an ongoing technical concern for many countries that operate commercial
nuclear power reactors. In a multinational cooperative effort to resolve burnup credit issues, a
Burnup Credit Working Group has been formed under the auspices of the Nuclear Energy Agency
of the Organization for Economic Cooperation and Development. This working group has
established a set of well-defined calculational benchmarks designed to study significant aspects of
burnup credit computational methods. These benchmarks are intended to provide a means for the

Total System Model Version 6.0 Preprocessor Smoothing Algorithm Validation Report

This validation report supports the issuance of Version 6.0 of the Total System Model (TSM BSC-2007a) that is described in the TSM User’s Manual (UM) (BSC-2007b) and the TSM Preprocessor (TSMPP) UM (BSC 2007c). This report assumes the reader has detailed working knowledge of the TSM functions and Civilian Radioactive Waste Management System (CRWMS) operations.
This validation was performed in accordance with AP-ENG-006, Total System Model (TSM)- Changes to Configuration Items and Base Case.

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste 3

The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel1 and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities.

Disposal of Spent Nuclear Fuel and High-level Radioactive Waste

The characteristics of spent nuclear fuel and high-level waste are described, and options for permanent disposal that have been considered are described. These include:
•disposal in a mined geological formation,
•disposal in a multinational repository, perhaps on an unoccupied island,
•by in situ melting, perhaps in underground nuclear test cavities,
•sub-seabed disposal,
•disposal in deep boreholes,
•disposal by melting through ice sheets or permafrost,
•disposal by sending the wastes into space, and

Abridged History of Reactor and Fuel Cycle Technologies Development: A White Paper for the Reactor and Fuel Cycle Technology Subcommittee of the Blue Ribbon Commission

The almost limitless energy of the atom was first harnessed in the United States, as scientists proved the basic physics of nuclear fission in a rudimentary reactor built in the floor of a squash court at the University of Chicago in 1942, and then harnessed that proven energy source in the form of atomic weapons used to end World War II. Scientists who accomplished this feat moved quickly after World War II to harness that power for peaceful uses, focusing primarily on electricity generation for industry, commerce, and household use.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.