Skip to main content

DSNF and Other Waste Form Degradation Abstraction

Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters.

Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel – Executive Summary

The U.S. Nuclear Waste Technical Review Board (Board) is tasked by the amendments to the Nuclear Waste Policy Act of 1982 to independently evaluate U. S. Department of Energy (DOE) technical activities for managing and disposing of used nuclear fuel and high-level radioactive waste. This report was prepared to inform DOE and Congress about the current state of the technical basis for extended dry storage1 of used fuel and its transportation following storage.

Factors Affecting Public and Political Acceptance for the Implementation of Geological Disposal

The main objective of this report is to identify conditions which affect public concern (either
increase or decrease) and political acceptance for developing and implementing programmes
for geologic disposal of long-lived radioactive waste. It also looks how citizens and relevant
actors can be associated in the decision making process in such a way that their input is
enriching the outcome towards a more socially robust and sustainable solution. Finally, it
aims at learning from the interaction how to optimise risk management addressing needs and

1999 Design Basis Waste Input Report for Commercial Spent Nuclear Fuel

The purpose of this document is to provide waste quantity and sequencing information that serves as the design basis for commercial spent nuclear fuel (CSNF) arriving at the repository, and the information on the transportation systems that will be used to deliver this fuel. It is intended as input for waste package and repository design analyses needed to ensure that facilities are flexible enough to be capable of receiving, unloading, handling, and emplacing the amounts and types of CSNF expected for receipt under realistic bounding conditions.

Long-term Safety for KBS-3 Repositories at Forsmark and Laxemar—a First Evaluation: Main Report of the SR-Can project

This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB’s application for a final repository. The purposes of the safety assessment SR-Can are the following:
1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant.

Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask

The Interim Staff Guidance on burnup credit (ISG-8) for spent fuel in storage and transportation casks, issued by the Nuclear Regulatory Commission’s Spent Fuel Project Office, recommends a burnup measurement for each assembly to confirm the reactor record and compliance with the assembly burnup value used for loading acceptance. This recommendation is intended to prevent unauthorized loading (misloading) of assemblies due to inaccuracies in reactor burnup records and/or improper assembly identification, thereby ensuring that the appropriate subcritical margin is maintained.

A Technology Roadmap for Generation IV Nuclear Energy Systems

To advance nuclear energy to meet future energy needs, ten countries—Argentina, Brazil, Canada, France, Japan, the Republic of Korea, the Republic of South Africa, Switzerland, the United Kingdom, and the United States—have agreed on a framework for international cooperation in research for a future generation of nuclear energy systems, known as Generation IV. The figure below gives an overview of the generations of nuclear energy systems. The first generation was advanced in the 1950s and 60s in the early prototype reactors.

Enhancing the Role of State and Local Governments in America’s Nuclear Future: An Idea Whose Time Has Come

This paper, prepared to aid the Blue Ribbon Commission on America’s Nuclear Future in its
deliberations, includes a discussion of the issues that would be faced in the siting, permitting and
licensing of storage and disposal facilities for the “back end” of the commercial nuclear fuel
cycle and for the Department of Energy’s (DOE) high–level radioactive waste. It discusses the
authority that could be employed by non–federal levels of government in supporting or opposing

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.