Skip to main content

An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (keff) Predictions

Taking credit for the reduced reactivity of spent nuclear fuel (SNF) in criticality analyses is referred to as burnup credit (BUC). Criticality safety evaluations require validation of the computational methods with critical experiments that are as similar as possible to the safety analysis models, and for which the keff values are known. This poses a challenge for validation of BUC criticality analyses, as critical experiments with actinide and fission product (FP)

Commercial Spent Nuclear Fuel Waste Package Misload Analysis

The purpose of this calculation is to estimate the probability of misloading a commercial spent
nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or
burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1
and Table 1). For this calculation, a misloaded waste package is defined as a waste package that

DHLW Glass Waste Package Criticality Analysis

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives.

Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

This report, Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology, contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology.

Evaluation of Cross-Section Sensitivities in Computing Burnup Credit Fission Product Concentrations

U.S. Nuclear Regulatory Commission Interim Staff Guidance 8 (ISG-8) for burnup credit covers actinides only, a position based primarily on the lack of definitive critical experiments and adequate radiochemical assay data that can be used to quantify the uncertainty associated with fission product credit.

Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs

This report presents studies to assess reactivity margins and loading curves for pressurized water reactor
(PWR) burnup-credit criticality safety evaluations. The studies are based on a generic high-density 32-
assembly cask and systematically vary individual calculational (depletion and criticality) assumptions to
demonstrate the impact on the predicted effective neutron multiplication factor, keff, and burnup-credit
loading curves. The purpose of this report is to provide a greater understanding of the importance of

Evaluation of Internal Criticality of the Plutonium Disposition Ceramic Waste Form

The purpose of this calculation is to perform partially and fully degraded mode criticality evaluations of plutonium disposed of in a ceramic waste form and emplaced in a Monitored Geologic Repository. The partially degraded mode is represented by the immobilized plutonium ceramic discs piled in the bottom of the waste package (WP) while neutron absorbers begin to leach out of the discs.

Geochemistry Model Validation Report: External Accumulation Model

The purpose of this report is to document and validate the external accumulation model that predicts accumulation of fissile materials in the invert, fractures and lithophysae in the rock beneath a degrading waste package containing spent nuclear fuel (SNF) in the monitored geologic repository at Yucca Mountain. (Lithophysae are hollow, bubblelike structures in the rock composed of concentric shells of finely crystalline alkali feldspar, quartz, and other materials (Bates and Jackson 1984 [DIRS 128109], p.

Disclaimer: Note that this page contains links to external sites. When leaving the CURIE site, please note that the U.S. Department of Energy and Pacific Northwest National Laboratory do not control or endorse the content or ads on these sites.