Skip to main content

Fast Flux Test Facility (FFTF) Reactor Fuel Criticality Calculations

The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.

Community

Fast Flux Test Facility (FFTF) Reactor Fuel Degraded Criticality Calculation: Intact SNF Canister

The purpose of these calculations is to characterize the criticality safety concerns for the storage of Fast Flux Test Facility (FFTF) nuclear fuel in a Department of Energy spent nuclear fuel (DOE SNF) canister in a co-disposal waste package. These results will be used to support the analysis that will be done to demonstrate concept viability related to use in the Monitored Geologic Repository (MGR) environment.

Community

Commercial Spent Nuclear Fuel Waste Package Misload Analysis

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected
commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package

Community

Range of Parameters For PWR SNF in a 21 PWR WP

This calculation file uses the MCNP neutron transport code to determine the range of parameters for Pressurized Water Reactor Spent Nuclear Fuel contained with a 21 PWR waste package (WP). Four base geometry patterns were considered in this work and included the following: intact fuel assemblies with intact WP internal components, intact fuel assemblies with degraded WP internal components, degraded fuel assemblies with intact WP internal components, and degraded fuel assemblies with degraded WP internal components.

Community

Nuclear Criticality Calculations for Canister-Based Facilities - HLW Glass

The purpose of this calculation is to perform nuclear criticality calculations for High-Level Waste (HLW) glass to support the criticality safety analysis of normal operations and off-normal conditions associated with the receipt, handling and loading of HLW glass canisters into 5-DHLW/DOE SNF Waste Packages (WPs) and 2-MCO/2-DHLW WPs in the surface facilities, in addition to the emplacement of loaded and sealed WPs in the sub-surface facility.

Community

Aging Facility Criticality Safety Calculations

This design calculation is a revision of the previous criticality evaluation of the operations and
processes that are performed in the Aging Facility. It will also demonstrate and assure that the
storage and aging operations to be performed in the Aging Facility meet the criticality safety
design criteria in the Project Design Criteria Document (BSC 2005i, Section 4.9.2.2), and the
nuclear criticality safety requirements described in the SNF Aging System Description Document

Community

Long-Term Criticality Control Issues for the MPC

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) in response to a request received via a QAP-3-12 Design Input Data Request (Reference 5.1) from Waste Acceptance, Storage, & Transportation (WAST) Design (formerly MRSMPC Design). This design analysis is an answer to the Design Input Data Request to provide: Specific requirements for long-term criticality control.

Community

TEV Collision with an Emplaced 5-DHLW/DOE SNF Short Co-Disposal Waste Package

The objective of this calculation is to determine the structural response of the 5-DHLW/DOE (Defense High Level Waste/Department of Energy) SNF (Spent Nuclear Fuel) Short Co-disposal Waste Package (WP) when subjected (while in the horizontal orientation emplaced in the drift) to a collision by a loaded (with WP) Transport and Emplacement Vehicle (TEV) due to an over-run. The scope of this calculation is limited to reporting the calculation results in terms of maximum total stress intensities (SIs) in the outer corrosion barrier (OCB).

Community

Drift Collapse Weight and Thermal Loading of TAD and 5-DHLW/DOE SNF Short Co-Disposal Waste Packages

The purpose of this calculation is to determine the structural response of the Transportation, Aging, Disposal (TAD) waste package (WP) and the 5-Defense High-Level Radioactive Waste/Department of Energy Spent Nuclear Fuel Short (5-DHLW/DOE SNF Short) co-disposal WP with emplacement pallet (EP) at room temperature and elevated temperatures for the complete drift collapse event sequence. the repository emplacement drift (RED) collapse will impose a pressure load due to the weight of the rubble rock and thermal expansion due to temperature rise as a result of lack of ventilation.

Community

Development of Technical Data Needed to Justify Full Burnup Credit in Criticality Safety Licensing Analyses Involving Commercial Spent Nuclear Fuel

This technical work plan (TWP) describes the planning of burnup credit (BUC) experimental work to be implemented by the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Lead Laboratory for Repository Systems. This TWP serves to coordinate and integrate a program to implement Work Packages S31023 to S31036 of the fiscal year 2007 annual work plan (AWP) for the Lead Laboratory.

Community